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Abstract

Motivated by the desire to study evolutionary responsiveness in fluctuating environments, and by the current interest in analyses of
evolution that merge notions of fitness maximization with dynamical systems concepts such as Lyapunov functions, this paper models
natural evolution with a simple stochastic dynamical system that can be represented as a Markov chain. The process maximizes
fitness globally via search and has links to information and entropy. These links suggest that a possible rationale for evolution with
the exponential fitness functions observed in nature is that of optimally-efficient search in a dynamic environment, which represents
the quickest trade-off of prior information about the genotype search space for search effort savings after an environment perturbation.
A Lyapunov function is also provided that relates the stochastic dynamical system model with search information, and the model
shows that evolution is not gradient-based but dwells longer on more fit outcomes. The model further indicates that tuning the
amount of selection trades off environment responsiveness with the time to reach fit outcomes, and that excessive selection causes a
loss of responsiveness, a result that is validated by the literature and impacts efforts in directed evolution.

Highlights

1. Evolution in dynamic environments may be captured by a simple, tunable Markov chain.
2. The method is not gradient-based, but dwells longer in states that are more fit.
3. Derived conditions for optimal search efficiency are met in biology and in physics.
4. Resilience losses from highly tuned selection may impact directed evolution efforts.
5. A Lyapunov function links the method’s fitness maximization to search information.
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1. Introduction

1.1. Background

Evolution has long been studied as a natural optimization
method [1–3] that may explain both observed phenotype (i.e.,
physical and behavioral trait) diversity [1, 4] and optimal pheno-
type adaptation to an environment [5]. The method is considered
by evolutionary ecologists to maximize fitness through natural
selection [6] regardless of the definition of fitness [7] or the
specifics of the map [8] from genotype (i.e., heritable genetic
composition) to phenotype and thence to fitness. The method’s
power has been experimentally harnessed by the synthetic biol-
ogy technique of directed evolution [9] to produce unnatural phe-
notypes [10–12] using tailored selective pressures and designed
environment dynamics. As an optimization method, evolution
has often been found to embody or cause trade-offs [13, 14] that
may be further enhanced by variations of the environment [15].
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Evolution has also been viewed as a stochastic [3, 16, 17]
search [18] process, with the results of stochasticity analyzed
in fluctuating environments [19–21] and modeled by the related
concepts of entropy [3, 22, 23] and information [24, 25]. In its
stochastic form, the process of evolution has been borrowed by
computer science to perform optimization in the guise of genetic
algorithms [26–28] (which can be modeled by Markov chains
[29]) and evolution strategies [30–33] (which can be successfully
deployed in dynamic environments [34] to also obtain biological
insight [35] akin to genetic algorithms [36]).

But despite the many studies and models of evolution, there
continue to be ‘differing views about the efficiency, or optimal-
ity, of the adaptation model’ of natural selection as a primary
driver of evolution [37], and there is thus a still-open question
about the optimality of the evolutionary process in addition to
a question about whether natural selection maximizes fitness
(the recent [38] has more on the latter question). Even the mean-
ing of fitness maximization is unclear [38]: four varieties that
are regarded by biologists for a given population are (1) the
equivalence between a stable genetic equilibrium and mean fit-
ness maximization, (2) the increase in mean fitness by natural
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selection when not at genetic equilibrium, (3) the equivalence
between a stable genetic equilibrium and the adoption of a phe-
notype by all organisms that maximize individual fitness, and (4)
the increase in the number of organisms adopting a phenotype
that maximizes individual fitness by natural selection when not
at genetic equilibrium [38].

Nevertheless, to account for, as [38] puts it, ‘some cases
[where] evolution by natural selection has led to traits that ap-
proximately maximize fitness within a set of feasible alternatives
[6, 37, 39, 40],’ fresh analyses of evolution have been pursued,
using inclusive fitness [41, 42] for instance. The ongoing For-
mal Darwinism (FD) project [43–46] calls for ‘a new kind of
argument. . . to link equations of motion on the one hand to op-
timization programs on the other, and a major point is that the
biologist’s concept of fitness maximization is not represented by
concepts from dynamical systems such as Lyapunov functions
and gradient functions’ [45]. The FD project seeks to axiomatize
fitness and link equilibrium concepts of population genetics to
solution concepts of optimization programs [46]. The FD project
tries to vindicate the “individual as maximizing agent analogy”
[38, 45, 47] and show that phenotypes present in an equilibrium
state are optimal because no other phenotype does better in that
equilibrium state.

1.2. Goals, Biological Meaning of Employed Terms, and Pre-
view of Results

This paper provides a simple stochastic dynamical system
model of natural evolution that can be represented by a discrete-
time homogeneous Markov chain (see Appendix A for a back-
ground on Markov chains), with the initial model motivation
consisting of examining responsiveness in the immediate after-
math of an environment fluctuation. The goals of the model
are to understand what happens to the evolution process in a
dynamic environment rather than to determine exact phenotype
outcomes, and, like the FD project, to specify the form of the
fitness function as well as to investigate the effects of changes
in process dynamics on understood equilibrium concepts within
the context of optimization.

No constraints are imposed on the meaning of fitness in
this paper, and the model is initially developed with an abstract
fitness function that ascribes value to individual phenotypes.
Because the population size is restricted to one at every time
step with this model for analytical simplicity, and because the
abstractness of the fitness function imposes no restrictions on
the constituents of a fitness valuation, it is possible to interpret
the results in this paper in the context of either population mean
fitness (which is trivially equivalent here to the fitness of the
population’s sole phenotype at a time step) or individual fitness
(which includes the fitness value effect of strategies pursued by
a phenotype, a possibility that is allowed by the abstract fitness
function). Since model extensions will lift the unity population
size restriction so that the trivial equivalence described above no
longer exists, an interpretation of individual fitness is a favored
one. But for this paper at least, both population mean fitness
and individual fitness are mathematically-plausible meanings of
fitness.

The dynamics of the model, which assumes discrete genera-
tions and single reproductive events per individual per time step,
embody changes caused by natural selection at each time step.
Fitness maximization in this paper is also open to both dynami-
cal interpretations debated by biologists: a process of increasing
population mean fitness, or a process of increasing adoption of a
phenotype that maximizes individual fitness. These interpreta-
tions will be elaborated upon with respect to the model where
appropriate. Natural selection is taken to have the traditional
meaning: local competition between phenotypes in a popula-
tion, with phenotypic traits arising from genotypes in a way that
includes environment effects [48].

Unsurprisingly, the local selection that is described by the
model maximizes fitness globally via search, and the process
also has links to the concepts of information and entropy, al-
though these links are not imposed a priori. What is surprising is
that, when determining the form of the fitness function, a possi-
ble rationale for the evolutionary process emerges. Borne out by
the kinds of fitness functions that exist in nature, this rationale
constitutes optimal search efficiency in a dynamic environment,
and it represents the quickest trade-off of prior information about
the search space for search effort savings after an environment
fluctuation occurs. Moreover, a Lyapunov function exists to
relate the dynamical representation of the fitness-maximizing
evolution process with search information. It is further shown
that this dynamical process dwells longer on more fit outcomes,
whatever they may be, instead of being gradient-based.

Additionally, insights into the effects of varying levels of
selection are obtainable from the model, such as a trade-off be-
tween responsiveness to a dynamic environment and the time to
reach a fit outcome. A related detrimental result (which stipu-
lates that excessive selection causes a loss of responsiveness) is
shown to be corroborated by numerous literature examples. This
result has implications for the fruits of directed evolution efforts.
Lastly, the similarities and differences between the model’s Mar-
kov chain optimization method and other methods that are used
in computer science (genetic algorithms, evolution strategies,
and simulated annealing [49]) are briefly described, with the
model in this paper recapturing a known Markov chain Monte
Carlo technique that was originally proposed to model physical
phenomena [50].

2. Methods

2.1. Problem Definition

As others have done before us (e.g., [18]), let us consider
evolution to be a form of stochastic search, which looks for some
genotype(s) that result(s) in some desirable phenotype(s). Let
the set of genotypes, X, be a finite albeit large one, consisting of
genotypes xi, 1 ≤ i ≤ n. As we shall see in Section 3.3, the fact
that X is fixed does not preclude any “evolution of evolvability”
[51] in a dynamic environment, a concept that we take to be a
change in the ability to respond to a selection process. Let the set
of phenotypes be called Z. Let the genotype-phenotype mapping
be denoted by z, i.e., z : X → Z, which is a function that is very
important to specify when determining the phenotype outcomes
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of evolution, but since we are more interested in insights from
a model of evolution, let us simply say that z is an unknown
function that can change with time because it includes the effects
of a changing environment. For notational simplicity, we will
omit explicitly denoting a function’s dependence on time.

Suppose that there exists some desirable phenotype zdes for
a particular environment (possibly, but not necessarily, a pheno-
type that is “best” for its environment); of course, zdes can also
change with time to reflect environment changes, and we may
not know zdes. We will assume that it is possible to measure
differences between any two phenotypes, i.e., Z is a metric space.
Let the discrepancy between the phenotype that results from a
genotype x, which is z(x), and the desirable, possibly unknown,
phenotype zdes be denoted by ||z(x) − zdes||.

Since we model evolution as a stochastic search process, we
consider it to produce a probability mass function φX over the
set of genotypes, φX : X → R+, and our model will provide
dynamic transition laws that cause X to be distributed according
to φX . We have postulated that evolution searches for a desirable
phenotype (whatever “desirable” means), so on average, the
process results in

E φX [||z(x) − zdes||] = 0. (1)

Let y(x) = ||z(x) − zdes||, so that we can rewrite the above as
E φX [y(x)] = 0, where y inherits the time-dependence of z. Be-
cause we do not know z, and we may not know zdes, y(x) is
effectively an unknown function for which we know an expecta-
tion.

Let us now consider phenotype fitness, however one chooses
to define fitness. Let us simply say that there exists a function f
that provides some positive real value for a phenotype, f : Z →
R+. Thus, there exists a real-valued positive fitness function
F over the genotypes too, with F : X → R+ : x 7→ F(x) =

( f ◦z)(x) = f (z(x)). We will determine the form that F takes later,
but for now we note that F can also change with environment
dynamics, because of variations in one or both of z and f .

Since evolution depends on fitness, the sought probability
mass function produced by our model must also depend on fit-
ness. Let us assume that for any xi ∈ X, the function φX(xi) is
a differentiable one of the fitnesses F(x1), . . . , F(xn). As previ-
ously stated, our primary model motivation is to examine respon-
siveness to environment fluctuations, where responsiveness is
equivalent to desiring that the probability mass function change
when F is perturbed. Hence, we desire that for any φX(xi), the
following is true for all x j ∈ X:

∂φX(xi)
∂F(x j)

, 0. (2)

2.2. Biological Relevance of the Motivation

Biological responsiveness was first examined as resilience
in the seminal work [52], and a survey of the many definitions
of resilience in the literature is available in [53]. There are
numerous instances of autonomous robustness as well as re-
silience to small and large environment fluctuations in complex
natural systems. Examples include physiological regulation in

multi-cellular organisms [54, 55]; group regulation in colonies
of social insects [56–58]; species evolution through adaptation
and natural selection [59–61]; the rebounding of complex sys-
tems from earthquakes, tsunamis, hurricanes, asteroid strikes,
etc. [62, 63]; and human brain recovery from traumatic stress
[64].

Responsiveness is also central to the theory of rational be-
havior, which is the basis for the theory that follows in Section 3.
Rational behavior [65] seeks to explain how collectives that
appear in nature, which have different fractions of professions
(as in beehives for example), maintain an appropriate fractional
distribution among the various social functions even if one of
the castes is removed. Articles on the subject now incorporate
evolution and natural selection [66, 67].

2.3. A Simple Markov Chain Model
For simplicity, let us begin by using an asexual reproduction

process in our evolution model, which we will expand at the end
of Section 2.4 to include sexual reproduction. Accordingly, let
us define a selective evolutionary generation system as follows.

Definition 1. A selective evolutionary generation system is a
quintuple Γ = (X, R, P, G, F), where

• X is a set of genotypes, X = {x1, x2, . . . , xn};

• R is a set of resources whose elements can be utilized to
transition between genotypes, R = {r1, r2, . . . , rm};

• P : R→ (0, 1] is a probability mass function on R repre-
senting the probability of choosing a resource at a time

step, P(ri) = Pr[R = ri] = pi,
m∑

k=1
pk = 1;

• G : X × R→ X is a generation function, a mapping from
one genotype to another using a resource from R;

• F : X → R+ is a positive function that evaluates genotype
fitness;

• X is reachable [68] through G and R; and

• the dynamics of the system are given by

X(t + 1) = S elect(X(t),G(X(t),R(t)),N), (3)

where S elect : X × X × [0,∞)→ X is a random function
such that if x1 ∈ X and x2 ∈ X are any two genotypes, and
N ∈ [0,∞) is the level of selectivity, then

S elect(x1, x2,N) =



x1 with probability
F(x1)N

F(x1)N +F(x2)N ,

x2 with probability
F(x2)N

F(x1)N +F(x2)N .

(4)

In (3), X(t) denotes the realization of a random genotype at
time t; R(t) denotes the realization of a random resource at time
t; G(X(t),R(t)) denotes the outcome genotype mapped from
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the realized genotype at time t utilizing the resource at time t;
and X(0) has a known probability mass function. Implicit in
G(X(t),R(t)) is the notion that some outcome genotypes may
be “easier” to achieve in the next generation by the realized
genotype X(t) than others, i.e., that some genotypes are more
closely related than others. Also in (3), the probability of a geno-
type realization at some future time given the present genotype
realization is conditionally independent of the past time history
of genotype realizations. Thus, the dynamics of a selective evo-
lutionary generation system form a discrete-time homogeneous
Markov chain [69].

For analytical simplicity, Definition 1 restricts the popula-
tion size at the start of any time step to a constant finite number
that is taken as one. A description of how to lift this population
size restriction to better reflect a Darwinian natural selection
process is provided in Section 4.1. It follows from the imposed
restriction that the population size in the middle of a time step is
two, after asexual reproduction has taken place and before selec-
tion occurs. Selection in this simple model is considered to be
the usual competition between individuals in a population, with
selection here defined as the outcome of competition between
any two individuals. Because the population size in the middle
of a time step is two in Definition 1, competition thus occurs
between the population’s only two members during a time step.
One can think of reproduction and competition as two distinct
processes that take place during a time step, with the seeming
situation here of a parent competing with its offspring due solely
to the imposed population size restriction. When the population
size is fixed at a larger number than one, it is easy to see how
this model setup is a special case of the situation where every
member in the population at the start of a time step produces
one offspring, and then pairwise competition occurs between
randomly-selected member pairs of the expanded population
(and not necessarily between a parent and its offspring).

The imposed unity population size restriction at the start of
a time step makes the fitness of the realization at that time equal
to the population mean fitness. Admittedly, the downside of
gaining mathematical tractability in this paper by imposing the
population size restriction results in a contradiction to kin selec-
tion in an inclusive fitness interpretation of fitness, and also a
lack of frequency dependent selection. But this setup still allows
for the standard question posed by biologists, viz., “if a trait
is determined by genotypes, how does the genotype frequency
evolve under natural selection?” Here, genotype evolution in
the single realizations can be examined instead of genotype
frequency because of the population size restriction.

Other takes on Definition 1 are also possible. For example,
rather than have each xi in X be a genotype alone, each xi can
instead reflect a genotype coupled with a strategy choice. Thus,
at each time step, a realization represents a (presumably benefi-
cial) genotype and a strategy that is pursued by that genotype.
Yet another interpretation is to have each xi be a strategy choice
only, a part of which is perturbed by a resource, and the dynamic
process then depicts the effects of strategy choice evolution.
These alternative interpretations are analogous to the “individual
as maximizing agent” philosophy described in the FD project
[45, 47], and fitness now has an individual fitness meaning.

The S elect function (which captures natural selection as
detailed by the biological relevance description in Section 2.4)
has a number of interesting properties, including:

• For all N,

Pr[S elect(x1, x2,N) = x1]
Pr[S elect(x1, x2,N) = x2]

=

(
F(x1)
F(x2)

)N

. (5)

That is, the ratio of the probabilities of selecting any two
genotypes is equal to the ratio of their respective fitnesses
raised to the power N. We call this property local rational-
ity, where “rational” refers to the ratio of the probabilities
and is a historical term that does not imply any agency
(recall that a rational number is a ratio of integers, and that
rational behavior [65] examines fractions of professions).

• For N = 0, the values of F(x1) and F(x2) are irrelevant.
That is,

Pr[S elect(x1, x2, 0) = x1] = 1/2, and (6)
Pr[S elect(x1, x2, 0) = x2] = 1/2. (7)

• When N → ∞, if F(x1) > F(x2) then

Pr[S elect(x1, x2,N) = x1]→ 1. (8)

On the other hand, if F(x1) < F(x2) then

Pr[S elect(x1, x2,N) = x2]→ 1. (9)

• If F(x1) = F(x2) then, for all N,

Pr[S elect(x1, x2,N) = x1] = 1/2, and (10)
Pr[S elect(x1, x2,N) = x2] = 1/2. (11)

To make the Markov chain behavior clear, let us specify the
pre-selection and post-selection probabilities. First, we make
explicit whether or not it is possible for a genotype to reproduce
using a given resource.

Definition 2. Let Γ = (X,R, P,G, F) be a selective evolution-
ary generation system. Let xi ∈ X, x j ∈ X and rk ∈ R. The
descendancy tensor, δ, has elements

δi jk =


1 if x j = G(xi, rk), 1 ≤ i ≤ n, 1 ≤ j ≤ n,

1 ≤ k ≤ m;
0 otherwise.

(12)

Hence, the descendancy tensor indicates whether it is possi-
ble to produce an offspring x j in one step from progenitor xi via
generation function G that employs resource rk. We can use this
tensor to create a matrix that represents the conditional probabil-
ity of transitioning to x j from xi, by utilizing the probability of
choosing each available resource in R and summing over all m
resources as follows.
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Definition 3. For the selective evolutionary generation system
Γ = (X,R, P,G, F), the matrix γ, called the unselective matrix
of transition probabilities, has elements

γi j = Pr[offspring is x j | progenitor is xi]

=

m∑
k=1

δi jk pk, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (13)

This matrix is a stochastic matrix (see the short proof in
[70]). We can use this matrix to produce the Markov chain’s
matrix of transition probabilities as follows.

Definition 4. For the selective evolutionary generation system
Γ = (X,R, P,G, F), the matrix of transition probabilities, P, has
elements

Pi j = Pr[X(t + 1) = x j | X(t) = xi], (14)

=



Pr[S elect(xi, x j,N) = x j | X(t) = xi]
×Pr[offspring is x j | progenitor is xi], ∀ j , i,

Pr[S elect(xi, xi,N) = xi | X(t) = xi]
×Pr[offspring is xi | progenitor is xi]

+
n∑

k=1
k,i

Pr[S elect(xi, xk,N) = xi | X(t) = xi]

×Pr[offspring is xk | progenitor is xi], if j = i.
(15)

=


1

1+

(
F(xi )
F(x j )

)N γi j, ∀ j , i,

γii +
n∑

j=1
j,i

1

1+

(
F(x j )
F(xi )

)N γi j, if j = i.
(16)

The matrix of transition probabilities in (16) is also a stochas-
tic matrix (again, a short proof is in [70]).

2.4. Biological Relevance of the Model
The two central tenets of evolution are embodied in Defini-

tion 1: undirected variation via the generation function, G; and
natural selection via the S elect function. The general formula-
tion involving G and resources R captures mutations, recombi-
nation, inheritance and drift, and also genetic flow; here, flow is
captured by unexpected perturbations of the fitness function as
described in Section 2.1. The S elect function that is deployed is
similar to the biochemical Hill function [71], which is commonly
used to model the activation or repression of gene transcription
in prokaryotes.

The level of selectivity, N, has a direct biological interpreta-
tion as well, which is easily discerned using one of the possible
definitions of fitness. Suppose that the fitness of a genotype is
measured by the total number of descendants produced over k
generations, k ≥ 1, a prolificity typically called future reproduc-
tive value or fecundity [48]. When a colony is initiated by two
progenitors x1 and x2, the ratio of the descendant population
fractions after k generations equals the ratio of the respective
future reproductive values,(

F(x1)
F(x2)

)
. (17)

After k generations, the ratio of the probability of choosing, by
random sampling, a descendant of x1 to the probability of choos-
ing a descendant of x2 is equal to the ratio of the descendant
population fractions (17). Correspondingly, let the ratio of the
probability of selecting x1 at the initial time to the probability of
selecting x2 at the initial time, (5), be identical to the ratio of the
respective prolificities, (17), with N = 1.

Now consider the following sequence of operations.

1. Initiate a colony with two progenitors x1 and x2, and let
descendants be produced for k generations.

2. Extract a sample from the resulting population. Use the
sample to initiate a second colony, and let descendants be
produced for k generations.

3. Iterate the sample and colony initiation procedure until an
N th colony is produced.

Then, the ratio of the probability of selecting a descendant of x1
to the probability of selecting a descendant of x2 after using this
multi-step process becomes(

F(x1)
F(x2)

) (
F(x1)
F(x2)

)
. . .

(
F(x1)
F(x2)

)
=

(
F(x1)
F(x2)

)N

, (18)

and it is now clear that N represents the number of selections
that are made, assuming a k-generation fecundity interpretation
of fitness. That is, one interpretation of N is that of a parameter
that is tuned during the process of directed evolution earlier
described; two biological experiments that explicitly refer to this
multi-selection model are [72] and [73].

Although biologists do not include mutants in determining
future reproductive value because mutations are rare among de-
scendants in static environments, the inclusion of mutants has
no significant effect on this number given their rarity, and em-
ploying this finer meaning of fecundity here results in a number
that remains consistent with biological practice. It is known that
‘in certain...conditions, the rate of mutation increases dramati-
cally’ by as much as a million-fold [74], and employing a notion
of fecundity that accounts for mutants becomes important for
analyses in dynamic environments where mutations intuitively
play a greater role in the evolutionary process.

The fact that nature also utilizes sexual reproduction pairs
does not invalidate this model because half of the reproductive
pairing can be viewed as a genotype x in the model, and the other
half can be viewed as a resource r; thus, the sets of X and R have
a non-empty intersection. Further, the objection that more than
one resource is required for reproduction can also be included in
the model without significant changes: each resource can itself
be considered a set containing the water, nutrients, etc. required
by a genotype for reproduction. A more involved model that
thoroughly addresses these issues is deferred to future work.

3. Results

We organize the insights obtained from the preceding Mar-
kov chain model into four main results on: (1) optimization;
(2) search efficiency in a dynamic environment, fitness func-
tion determination and Lyapunov function characterization; (3)
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dynamic environment responsiveness and associated trade-offs;
and (4) gradient ascent dissimilarity. A fifth result touches upon
the model’s relationship to existing literature.

3.1. Result 1: The Markov Chain Model is Included in the Class
of Markov Chains That “Behave Rationally”

We first define a broader class of Markov chains and then
show that our Markov chain model of the preceding section
belongs to this class. Because the following sections have results
that are pertinent to this entire Markov chain class, they apply to
our model too.

Let (X,P) be a time-homogeneous, irreducible, ergodic Mar-
kov chain, where X = {x1, x2, . . . , xn} is the set of states of a
Markov process, P ∈ Rn×n is the matrix of transition proba-
bilities for these states, and n < ∞ is the number of states.
Assume that the initial probability distribution over the states
is known, i.e., we are given an n-vector p(0) having elements
pi(0) = Pr[X(0) = xi] for all xi ∈ X, where X(0) denotes the

state realization at time 0, and we have
n∑

i=1
pi(0) = 1. Since we

have assumed that the states in X are ergodic and irreducible,
they admit a unique stationary probability distribution [69, 75].
Let π =

[
π1 π2 . . . πn

]
be the row vector of these stationary

probabilities, satisfying the constraints πi > 0 ∀i, and
n∑

i=1
πi = 1.

Let F : X → R+ be a positive fitness function. Let N ∈ [0,∞).

Definition 5. The time-homogeneous, irreducible, ergodic Mar-
kov chain (X,P) is said to behave rationally with respect to
fitness F with level N if

πi

π j
=

 F (xi)

F
(
x j

) N

, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (19)

This is a definition of global rationality, where “rational”
again refers to the ratio of the probabilities (again, as in rational
numbers, without any implications of agency), and “global”
refers to the stationarity of these probabilities.

Each stationary probability can be explicitly characterized
to ensure Markov chain rational behavior.

Theorem 1. The time-homogeneous, irreducible, ergodic Mar-
kov chain (X,P) behaves rationally with respect to fitness F with
level N if and only if

πi =
F (xi)N

n∑
k=1

F (xk)N
, 1 ≤ i ≤ n. (20)

Proof. See Appendix B.

Here, we have a more general, probabilistic version of the
optimization of an objective function. A Markov chain that
behaves rationally selects the state of maximum fitness with the
highest stationary probability, and, in the limit as N approaches
∞, this probability is 1. That is, N tunes the concentration of the
stationary probability distribution around the state of maximum
fitness, and in the limit as N approaches ∞, the problem and

solution then revert to one of standard, off-line optimization,
yielding a delta function at the location of a state in X.

We now show that our model of evolution can be sufficient
for Markov chain rational behavior.

Theorem 2. For the ergodic selective evolutionary generation
system Γ = (X,R, P,G, F), assume that γ is symmetric. Then
the Markov chain representing the stochastic dynamics of the
ergodic selective evolutionary generation system behaves ra-
tionally with fitness F and level N. That is, the row vector
π =

[
π1 π2 . . . πn

]
, where πi satisfies (20), is a left eigen-

vector of P, the matrix of transition probabilities for Γ, with
corresponding eigenvalue 1 (i.e., πP = π). Hence, π is the
vector of stationary probabilities for the selective evolutionary
generation system.

Proof. See Appendix B.

The symmetry condition on γ implies that there exists equi-
probable forward and reverse transitions between any pair of
genotypes prior to the selection process. Theorem 2 proves
that our model’s underlying time-homogenous, irreducible, er-
godic Markov chain possesses a stationary distribution that cor-
responds to Markov chain rational behavior. Convergence to
this distribution is automatically guaranteed by the standard
result in Markov chain theory (Appendix A) that proves con-
vergence to a unique stationary probability distribution for a
time-homogeneous, irreducible, ergodic Markov chain in the
limit as time goes to infinity. Since this standard result is also
independent of the initial probability distribution over X, cor-
rectness of our model as an optimization technique also follows.
An alternative correctness proof that links to search efficiency is
available in Theorem 4.

The requirement that mutations be reversible is satisfied in
biology as true back mutations [76, 77], although these muta-
tions are infrequently recorded. A minor consequence of the
symmetry condition on γ is the following.

Theorem 3. For the ergodic selective evolutionary generation
system Γ = (X,R, P,G, F), assume that γ is symmetric. Then
the Markov chain representing the stochastic dynamics of the er-
godic selective evolutionary generation system is time-reversible,
i.e.,

πiPi j = π jP ji, ∀i, j. (21)

Proof. See Appendix B.

Therefore, the Markov chain representing the stochastic dy-
namics of the selective evolutionary generation system and its
time reversed form are statistically the same.

3.2. Result 2: Markov Chains That “Behave Rationally” Per-
form Search-Based Optimization Efficiently With Exponen-
tial Fitness Functions

In our initial study of Markov chain rational behavior [78],
we showed that it minimizes a cross-entropy function to yield
search entropy. That is, the stationary distribution π of the
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ergodic Markov chain (X,P) that behaves rationally with respect
to fitness F with level N solves the optimization problem

min
π1,...,πn

U(π) = −

n∑
i=1

ϕi ln(πi), (22)

subject to the constraints
n∑

i=1
πi = 1, and πi > 0, ∀i, utilizing the

(normalized) fitness distribution

ϕi =
F (xi)N

n∑
k=1

F (xk)N
, 1 ≤ i ≤ n. (23)

This result states that at the optimum, the stationary distribution
agrees with the fitness distribution, i.e., π = ϕ. A corollary is
that the time-homogeneous, irreducible, ergodic Markov chain
(X,P) behaves rationally with respect to fitness F with level N
if and only if its stationary probability distribution minimizes
the “fitness-expectation of information” (the right hand side of
(22), with information as defined by [79]), a so-called Principle
of Least-Informative Fitness-Expectation (LIFE). At the opti-
mum, this fitness-expectation of information is the entropy of
the fitness distribution:

U∗ = H(ϕ) = −

n∑
i=1

ϕi ln(ϕi). (24)

Thereafter in [78], the maximization of this search entropy
is investigated, based on results about efficient search from [80]
and [81] that specify entropy maximization to eliminate search
biases. Such search biases can be induced by, for example,
predisposition of the optimization process; this predisposition
causes inefficient search when it is incorrect as a result of internal
or external change. Thus, to be search-efficient in a dynamic
environment, an algorithm cannot incrementally construct a
hypothesis and maintain good parts of the current hypothesis,
since this biases the search. A maximum entropy distribution is
the only one lacking bias.

Maximizing entropy has another interpretation as a trade-off.
First, it follows from (22) and (24) that

−

n∑
i=1

ϕi ln(πi) ≥ −
n∑

i=1

ϕi ln(ϕi), (25)

with the equality holding if and only if π = ϕ. It also follows
that

−

n∑
i=1

ϕi ln
(
πi

ϕi

)
≥ 0, (26)

with the equality holding if and only if π = ϕ. A non-stationary
version of the left-side of this expression is

V(p(t)) = −

n∑
i=1

ϕi ln
(

pi(t)
ϕi

)
. (27)

Reference [80] provides a relationship between search theory,
(27) and a similar expression

W(p(t)) = −

n∑
i=1

pi(t) ln
(

pi(t)
ϕi

)
. (28)

Initial values V(p(0)) and W(p(0)) are measures of prior infor-
mation for a search. It is stated that V(p(t)) − V(p(0)) is ‘the
measure of the amount of prior information utilized’ by the
search up to time t, and W(p(t))−W(p(0)) is ‘the measure of the
savings in search effort thereby achieved. The optimal [search]
policy is then the one that trades off initial information for re-
duced search effort, as quickly as possible’ [80]. This policy is
proved to be one of entropy maximization, resulting in optimally
efficient search.

During hypothesis-independent search-based optimization
with a time-varying objective function or time-varying state
fitnesses, an exponential fitness function is proved to relate
Markov chain rational behavior, search entropy and optimally
efficient search [78]. That is, suppose that y : X → R is an
unknown function for which an expected value, E [y(x)], is a
known number Y = 0 in accordance with Section 2.1. Then a
scheme with underlying Markov chain dynamics that behave
rationally and a fitness function that is exponential solves the
search problem and also maximizes the search entropy while
doing so. It is shown that the normalized fitness

ϕi = αe−βy(xi), 1 ≤ i ≤ n, (29)

(where α and β are any constants) and the stationary distribution
π of the time-homogeneous, irreducible, ergodic Markov chain
(X,P) that behaves rationally with respect to fitness F with level
N solves the optimization problem

max
ϕ1,...,ϕn

min
π1,...,πn

U(ϕ,π) = −

n∑
i=1

ϕi ln(πi), (30)

subject to the constraint E [y(x)] = Y.
Since y is unknown, the above result is independent of know-

ing (possibly dynamic) z and zdes. The implication is that, for
the case of unknown zdes, any exponential function that results
in maximum normalized fitness at some unknown phenotype
together with a scheme that makes use of Markov chain rational
behavior (for instance, our Markov chain model of evolution)
guarantee efficient search-based optimization. For the case of
known zdes, one example fitness function like

F(xi) = e−(K f (z(xi)−zdes)2) (31)

together with a scheme like our model guarantee efficient search-
based optimization. The example fitness function is such that
a fitness between 0 and 1 is achieved depending on how well
the phenotype matches the desired: a fitness of 1 represents a
perfect match, whereas a fitness of 0 signifies a poor match. The
example fitness function utilizes a gain parameter, K f , which
indicates how dissimilar the desired phenotype and a high-fitness
phenotype are tolerated to be. Larger gains indicate greater
permissiveness of poor matches. The gain parameter is also
related to the level of selectivity, N, because the latter is always
used as an exponent of fitness. Hence, in the above fitness
function, K f plays a similar role to N. It can be shown that the
fitness function is proportional to a Gaussian probability density
function with mean equal to the desired output, variance equal
to 1

2K2
f
, and a constant of proportionality equal to

√
2π
K2

f
.
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In accordance with the No Free Lunch theorems on opti-
mization [82], a Markov chain rational behavior search-based
scheme is tailored to that end of the spectrum where very little is
known (a predisposition hypothesis is unsuitable) and significant
search space exploration is required. Of course, nature’s search-
based optimization procedure in a changing fitness landscape
is hypothesis-independent, and the process entails significant
genotype exploration. Exponential fitness functions supporting
the premise of efficient search arise in nature if one considers
fecundity as the measure of fitness. Other examples include the
beak depth of the Galapagos finches [83] and instances when
directional selection [48] is prevalent.

Correctness of our Markov chain model of evolution as an
optimization technique can be explicitly proved as follows, using
a measure of the prior information for a search as a Lyapunov
function.

Theorem 4. For the ergodic selective evolutionary generation
system Γ = (X,R, P,G, F), assume that γ is symmetric. Consider
the discrete-time dynamic system described by

p(t + 1) = p(t)P, (32)

where P is the matrix of transition probabilities for Γ, and p(t)
is an n-dimensional row vector at time t.

1. This discrete-time dynamic system has an invariant mani-
fold. The manifold is the set of vectors p with components

pi(t) > 0, 1 ≤ i ≤ n, and
n∑

i=1
pi(t) = 1.

2. The manifold has an equilibrium for these dynamics, π,
with components πi satisfying (20).

3. The function

V(p(t)) = −

n∑
i=1

ϕi ln
(

pi(t)
ϕi

)
, (33)

where ϕi satisfies (23), is a Lyapunov function that estab-
lishes global asymptotic stability of the dynamic system
(32) with respect to the manifold.

Proof. See Appendix B.

The Lyapunov function represents a conservation law, the
conservation of prior information for a search. Its existence is
consistent with Noether’s theorem [84] that associates a conser-
vation law with a symmetry in the underlying physics, since γ
has been assumed symmetric.

3.3. Result 3: Markov Chains That “Behave Rationally” Exhibit
Responsiveness Trade-offs

We turn now to necessary and sufficient conditions for re-
sponsiveness, and some intriguing trade-offs that result. Respon-
siveness of Markov chains that behave rationally is defined as
the sensitivity of the stationary distribution to changes in fitness.

Definition 6. For any time-homogeneous, irreducible, ergodic
Markov chain (X,P) with a positive fitness function F for all the

states in X, the extrinsic resilience of state xi to changes in the
fitness of state x j, j , i, is defined as

ρi j =
∂πi

∂F(x j)
, (34)

and the intrinsic resilience of state xi to changes in its own fitness
is taken to be

ρii =
∂πi

∂F(xi)
. (35)

We say that the Markov chain (X,P) is responsive if ρi j , 0
for all i and j.

Since the stationary distribution π has the closed form ex-
pression (20) for the time-homogeneous, irreducible, ergodic
Markov chain (X,P) that behaves rationally with respect to fit-
ness F with level N, the extrinsic and intrinsic resiliencies are

ρi j =
∂πi

∂F(x j)
=
−Nπiπ j

F(x j)
, ∀ j , i, (36)

ρii =
∂πi

∂F(xi)
=

Nπi (1 − πi)
F(xi)

. (37)

These equations also provide insight into an “evolution of evolv-
ability” [51] in a dynamic environment, which is taken here as a
change in the ability to respond to a selection process. Because
the extrinsic and intrinsic resiliencies depend on fitness in such a
way that their sensitivity to changes in fitness are also functions
of fitness, it can be concluded that resilience itself evolves in a
dynamic environment. For instance,

∂ρi j

∂F(x j)
=

ρi j

F(x j)

(
N

(
1 − 2π j

)
− 1

)
, ∀ j , i. (38)

The level of selectivity has the following asymptotic effect
on responsiveness.

Theorem 5. For the time-homogeneous, irreducible, ergodic
Markov chain (X,P) that behaves rationally with respect to
fitness F with level N,

ρi j

∣∣∣∣N=0
j,i

= ρii

∣∣∣∣
N=0

= 0, (39)

and
lim

N→∞
j,i

ρi j = lim
N→∞

ρii = 0. (40)

Proof. See Appendix B.

As a result of Theorem 5, we have quantification that stan-
dard, off-line optimization (N → ∞) is non-responsive. Purely
random optimization (N = 0) is also unresponsive.

Responsiveness is a direct outcome of Markov chain rational
behavior, as stated below.

Theorem 6. The time-homogeneous, irreducible, ergodic Mar-
kov chain (X,P) is responsive if the chain behaves rationally.

Proof. See Appendix B.

8



Responsiveness does not always imply Markov chain ratio-
nal behavior (see [70] for a counter-example). But we can state
the following instead.

Theorem 7. Ergodicity is a necessary condition for the time-
homogeneous, irreducible Markov chain (X,P) to be responsive.

Proof. See Appendix B.

Furthermore, there is a fundamental trade-off between ex-
trinsic and intrinsic resilience that is imposed by the constraint
n∑

i=1
πi = 1. Taking the partial derivative of this constraint with

respect to the fitness of state xi, we obtain

∂πi

∂F(xi)
+

n∑
j=1
j,i

∂π j

∂F(xi)
= 0. (41)

Note that, from (36) and (37), the extrinsic resiliencies are al-
ways negative, whereas the intrinsic resiliencies are positive.
Hence, (41) implies that any change in fitness that improves
a state’s intrinsic resilience is at the expense of the extrinsic
resilience of all other states. Similarly, any change in fitness that
improves a state’s extrinsic resilience is at the expense of the
intrinsic resilience of another state, and the extrinsic resilience
of all other states.

It is possible to control the expected amount of time to reach
the fittest genotype, given a starting genotype, with the level of
selectivity N. We make use of the definition in Appendix A of
mean hitting time to x j given xi, denoted σi j.

Theorem 8. For the ergodic selective evolutionary generation
system Γ = (X,R, P,G, F), assume that there exists a unique
index I such that F(xi) is maximized for i = I. Then for all i , I,

1. lim
N→∞

σiI exists, and

2. σiI is a strictly decreasing function of N.

Proof. See Appendix B.

Hence, a trade-off exists between responsiveness and the
expected hitting time of the genotype that optimizes fitness, with
the trade-off controlled by the level of selectivity, N. That is,
increasing N reduces the mean hitting time to the fittest genotype
but also decreases responsiveness.

The above trade-off recalls the second No Free Lunch theo-
rem on optimization [82]. This result states that ‘if one algorithm
[e.g., a traditional algorithm for off-line optimization] outper-
forms another [e.g., our model of evolution, where the evaluation
is on both duration and responsiveness] for certain kinds of cost
function dynamics [e.g., static cost functions, where responsive-
ness is irrelevant and N is large], then the reverse must be true
on the set of all other cost function dynamics [i.e., the non-static
kind].’

Nature also supports the quantification that standard opti-
mization (N → ∞) is non-responsive and non-resilient. If we
assume a k-generation fecundity interpretation of fitness, then
N → ∞ represents an infinite number of selections made over k
generations. There is much biological evidence across kingdoms

to confirm that prolonged selective breeding yields non-resilient
strains and vice-versa. Specific examples include the:

1. Large-scale evolution of E. coli to resist a single antibi-
otic, which causes enhanced susceptibility to any other
antimicrobial agent that then replaces that antibiotic [85].

2. Selective breeding of commercial poultry for rapid growth
in a disease-free environment, which results in a com-
promised immune function response when fowl diseases
appear [86].

3. Determination that plants in a more intense selective envi-
ronment (e.g., the repeated application of very strong her-
bicides that persist in an environment, versus less-intense
selection when pathogens remain on a host for the dura-
tion of their life cycle, versus low-intensity selection of
herbivore-tolerance) display greater “costs of resistance”
(i.e., reductions of yield when the selective pressures are
removed), with the costs ‘more often found in crops ver-
sus wild species’ and with a ‘greater control of genetic
background increas[ing] the probability of detecting [the]
costs of resistance’ [87].

4. Artificial selection of D. melanogaster for improved resis-
tance to endoparasitoid A. tabida, which reduces survival
when the environment is changed to one that does not have
the endoparasitoid but has high competition with other
unparasitized D. melanogaster instead [88].

5. Similar artificial selection of least killifish H. formosa for
improved resistance to cadmium, which reduces survival
when the water temperature is slowly elevated to summer
water temperatures [89].

6. Alleviation of selection to promote a different response
to a changing environment: in [90], house mice selected
for high nest-building behavior at room temperature con-
sume less food when the environment is changed to one
of cold temperature, but if such 46th-generation mice
are mated for three generations with control mice and
those 46th-generation mice similarly selected for low nest-
building behavior at room temperature such that the orig-
inal excessive selection effects are countered (as shown
by heritability estimates and mixed next-building behav-
ior at room temperature), and if selection for high nest-
building behavior at room temperatures then proceeds on
the third-generation crosses for another 10 generations,
the resultant offspring now consume more food when the
environment is changed to one of cold temperature.

3.4. Result 4: On Local Responsiveness and Gradient Ascent
Dissimilarity of Markov Chains That “Behave Rationally”

We briefly examine a selective evolutionary generation sys-
tem’s response to changes in selectivity and genotype fitness.
First, the probability of increasing fitness with every time step,
conditioned upon knowledge of the current genotype, is

Pr [F (X (t + 1)) > F (X (t)) | X (t) = xi]

=

n∑
j=1
j,i

ind
(
F

(
x j

)
> F (xi)

)
Pi j, (42)
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where ind denotes the indicator function and satisfies ind(True) =

1 and ind(False) = 0. This conditional probability represents
Wright’s classic notion of climbing a peak in a rugged fitness
landscape [91] given a genotype and its fitness. This conditional
probability increases as N increases.

However, the unconditional probability of increasing fitness
with every time step,

Pr [F (X (t + 1)) > F (X (t))]

=

n∑
i=1

n∑
j=1
j,i

ind
(
F

(
x j

)
> F (xi)

)
Pi jπi, (43)

which is not predicated on knowing whether a genotype is fit
or unfit, approaches zero in the limit as N approaches∞. That
is, the unconditional probability decreases as N increases. This
(perhaps counter-intuitive) result is due to the elitist nature of the
resultant selection process: the genotype with maximal fitness
has a stationary probability of one, and consequently, the prob-
ability of improving fitness is correspondingly zero. To quote
from Wright’s seminal paper [91]: ‘The effect of increased
severity of selection is, of course, to increase the average level of
adaptation until a new equilibrium is reached. But again this is
at the expense of the field of variation of the species and reduces
the chance of capture of another adaptive peak.’

Next, changing genotype fitness due to a changing environ-
ment affects elements of the matrix of transition probabilities, P,
as follows:

∀ j , i,
∂Pi j

∂F(x j)
=

N
F(x j)

 1

1 +
( F(x j)

F(xi)

)N

 Pi j, (44)

∂Pii

∂F(x j)
=
−N

F(x j)

n∑
j=1
j,i

1

1 +
( F(x j)

F(xi)

)N Pi j, (45)

∀ j , i,
∂Pi j

∂F(xi)
=
−N

F(xi)

 1

1 +
( F(x j)

F(xi)

)N

 Pi j, (46)

∂Pii

∂F(xi)
=

N
F(xi)

n∑
j=1
j,i

1

1 +
( F(x j)

F(xi)

)N Pi j. (47)

In the first equation above, we see that an increase in the fitness
of genotype x j increases the probability of transitioning to that
genotype from current genotype xi by an amount that is propor-
tional to the level of selectivity and inversely proportional to the
fitness value. The second equation indicates a corresponding
decrease in the probability of transitioning back to the current
genotype under the same altered fitness landscape. Unlike gradi-
ent ascent optimization where the transition to another genotype
would be directly proportional to the fitness value, what we have
here is reminiscent of the retardation property in the original
rational behavior [65]; the stochastic process “slows down” tran-
sitions in more favorable fitness conditions to take advantage of
the external environment. Similar effects on the transition proba-
bilities are suggested by the latter two equations for changes in
current genotype fitness.

This recalls the first, yet well-known, mathematical treat-
ment of random fitness landscapes [92], which encapsulated
this idea but for fitnesses in a constant environment: ‘As the
local hill is climbed, or the local optimum is reached, the rate of
finding nearby fitter variants dwindles; thus in the long term the
process must wait until a long jump mutation lands on the side
of some distant hill, whereafter local hill climbing recommences.
. . . [T]he interval before the next long jump fitter variant is found
must typically more than double.’ In effect, [92] describes a
process that spends more time in a region of greater fitness, just
as with a dynamic environment above, and [92] also describes
local actions that are similar to (42). Additional works that
posit a non-gradient approach for evolution dynamics in a static
landscape include [93, 94].

3.5. Result 5: Relationships to Computer Science and Physics
It can be shown that the Markov chain model in this paper

generalizes both the computer science (1+1)-Evolution Strategy
(denoted (1+1)-ES) and the Canonical Genetic Algorithm with
Fitness Proportional Selection (CGAFPS) by comparing (5) to
each method’s ratio of the probability of selecting a candidate
genotype to the probability of selecting the genotype’s offspring
[70]. For the (1+1)-ES, one genotype, x1, produces one mu-
tated offspring genotype, x2, and the ratio of the probability of
selecting x1 to the probability of selecting x2 is simply

Pr[x1 is selected]
Pr[x2 is selected]

=
ind (F (x1) > F (x2))
ind (F (x2) ≥ F (x1))

. (48)

The ratio in (48) is taken to be ∞ if the denominator is zero.
This ratio equals (5) when the parameter N in (5) approaches
∞. For the CGAFPS, we are interested in the probability that
a genotype, x1, of the population is chosen to be a member
of the population for the next generation without experiencing
crossover or mutation. We then compare this probability to the
probability that an offspring of x1 is a member of the population
at the next generation. Per [70], the ratio of the probability of
selecting x1 to the probability of selecting x2 has form

Pr[x1 is selected]
Pr[x2 is selected]

= K
F(x1)
F(x2)

, K > 0. (49)

Although the equation above is similar to (5), the CGAFPS ratio
of selection probabilities is proportional to the fitness ratio. In
(49), if K = 1 we obtain a particular case of (5) where N = 1.

The Markov chain model in this paper is related to, but is not
the same as, the Metropolis algorithm underlying simulated an-
nealing; in fact, our initial efforts [78] in Markov chain rational
behavior have shown that the model in this paper is equivalent
to Barker’s version of the Hastings algorithm [50, 69] instead
of Metropolis’. Whereas the Metropolis algorithm is optimal
with respect to asymptotic variance, Barker’s algorithm is opti-
mal with respect to search efficiency when applied in dynamic
environments with exponential fitness functions [78]. Thus, our
model appears suitable not only for biology (i.e., for capturing
evolutionary processes in fluctuating environments), but also for
physics (i.e., for computing the radial distribution functions for
a proton-electron plasma as proposed by Barker).
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Such a connection between algorithmic evolution [17] and
statistical mechanics has already been recognized for Darwinian
dynamics occurring in a constant environment when modeled
using an approach different from a Markov chain [95]. This
model suggests relative entropy as a Lyapunov function. It is
thus unsurprising that an identical concept to relative entropy
emerges as a Lyapunov function in this paper for an evolutionary
process in a fluctuating environment, albeit in the context of
search information and through a different technical approach
(that of Markov chains). As [95] indicates for a constant envi-
ronment, it is possible that this paper’s dynamic environment
Lyapunov function holds even without assuming a symmetry in
the underlying physics and its ensuing time-reversibility.

4. Summary

A simple stochastic dynamical system model of natural evo-
lution has been proposed using a Markov chain that belongs
to a class of Markov chains that “behave rationally.” These
Markov chains maximize fitness globally via search and are
tunable depending on the level of selection. Despite ignorance
of the genotype-phenotype mapping and knowledge only that
some desirable phenotype must be realized on average, the links
that these Markov chains have to search information and en-
tropy provide a rationale for ‘the efficiency, or optimality, of
the adaptation model’ of natural selection as a primary driver of
evolution, which is considered a still-open question [37]. When
the fitness function is exponential, as are some realizations in
nature, these Markov chains achieve optimal search efficiency in
a dynamic environment by trading-off prior information about
the search space of genotypes for search effort savings as quickly
as possible after an environment perturbation occurs. This kind
of fitness function also ensures that some desirable phenotype
is reached, even if what is considered desirable changes with
the environment perturbation. A Lyapunov function relates the
dynamical system model with search information. The model is
also shown to not be gradient-based, dwelling longer on more
desirable phenotypes that have greater fitness.

Trade-offs suggested by Markov chains that “behave ratio-
nally” include that of tuning selection to improve the time to
reach a desirable phenotype by sacrificing responsiveness. The
result that these Markov chains suggest, about losing respon-
siveness with excessive selection, is validated by the literature
and impacts directed evolution efforts in synthetic biology. It is
possible that additional (Pareto-optimal) trade-offs result when
the exponential fitness function is taken to be the weighted sum
of exponential functions that individually represent a different
objective.

4.1. Model Limitations and Efforts to Address Them
There are several limitations of the model that is developed

in this paper. These include a lack of an explicit sexual repro-
duction mechanism (something more than simply viewing half
of a reproductive pairing as a resource) and the imposition of a
population size restriction for analytical simplicity (resulting in
a contradiction to kin selection in an inclusive fitness interpreta-
tion of fitness and also a lack of frequency dependent selection).

But it is possible to extend our model by removing the pop-
ulation size restriction. A simple extension is to have each
member of an initial population initiate the Markov chain pro-
cess described in our model, i.e., one may consider multiple such
processes to run in parallel, with the different genotype realiza-
tions of the initial population belonging to some neighborhood
of the genotypes of X. Another approach is to redefine X as a set
of genotype populations, where each xi is a population of geno-
types that are “close” in some way, and then model evolution
as searching for some population of desirable phenotypes. The
described Markov chain model is flexible in this way, with the
derived results remaining unchanged. Future work will directly
tackle model limitations analytically.
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Appendix A. Background on Markov Chains

We briefly review theoretical concepts of discrete-time Mar-
kov chains that are relevant to this paper, as summarized from
[69, 75, 96].

Definition 7. A Markov chain (X,P) is a stochastic sequence of
realizations X(0),X(1), . . ., X(t),X(t + 1), . . . of elements from
a set X = {x1, x2, . . . , xn}, n < ∞, at times t = 0, 1, . . . that result
from a process starting with an initial probability mass function
defined over all xi ∈ X, namely p(0) ∈ Rn having elements
pi(0) = Pr[X(0) = xi], that has conditional probabilities that
satisfy the Markov property

Pr[X(t + 1) = x j | X(t) = xi, . . . ,X(0) = xk] =

Pr[X(t + 1) = x j | X(t) = xi], (A.1)

where Pr[X(t + 1) = x j | X(t) = xi] is taken to be element Pi j(t)
of the matrix P(t) ∈ Rn×n, which is called the matrix of transition
probabilities.

Definition 8. The Markov chain (X,P) is time-homogeneous
if Pi j(t) is independent of t for all xi and x j in X. That is, in
Definition 7, Pr[X(t + 1) = x j | X(t) = xi] is taken to be element
Pi j of the matrix P ∈ Rn×n.

The Markov chain (X,P) can be described by a discrete-time
dynamic system

p(t + 1) = p(t)P, (A.2)

where p(t) is an n-dimensional row vector that represents the
probability distribution over X at time t. The components of p(t)

satisfy pi(t) > 0, 1 ≤ i ≤ n, and
n∑

i=1
pi(t) = 1. Also,

p(t + k) = p(t)Pk, k = 1, 2, . . . . (A.3)
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Definition 9. For the time-homogeneous Markov chain (X,P),
the period di of xi ∈ X is

di = gcd{k ≥ 1 | Pk
ii > 0}, (A.4)

where di = +∞ if there does not exist a k ≥ 1 such that Pk
ii > 0.

We say that xi is aperiodic if di = 1.

Definition 10. The set X of the time-homogeneous Markov
chain (X,P) is closed if, for all xi ∈ X,

∑
x j∈X

Pi j = 1, (i.e., there

is zero probability of a transition to any element not in X). This
makes P a stochastic matrix. The set X of the time-homogeneous
Markov chain (X,P) is reachable if, for all xi ∈ X, x j ∈ X, there
exists a k = 1, 2, . . . such that Pk

i j > 0. The time-homogeneous
Markov chain (X,P) is irreducible if X is closed and reachable.

Definition 11. For the time-homogeneous Markov chain (X,P),
the return time T j to x j ∈ X is

T j = inf{t ≥ 1 | X(t) = x j}, (A.5)

where T j = ∞ if X(t) , x j for all t ≥ 1. We say that x j is
recurrent if Pr[T j < ∞ | X(0) = x j] = 1 and we call x j positive
recurrent if E [T j | X(0) = x j] < ∞. The hitting time of x j is
taken to be

S j =

T j, if X(0) , x j,

0, if X(0) = x j.
(A.6)

The mean hitting time to x j given xi ∈ X is defined as

σi j = E [S j | X(0) = xi] =


n∑

k=1
Pik

(
σk j + 1

)
, ∀i , j,

0, i = j,
(A.7)

and we take σ j to be
[
σ1 j σ2 j . . . σn j

]T
.

If we let 1 =
[
1 1 . . . 1

]T
and D j be a diagonal matrix

with ones on the diagonal except one zero at position ( j, j), then

σ j = D j(Pσ j + 1). (A.8)

Alternatively,
σ j = (I − D jP)−1D j1, (A.9)

where I is the n × n identity matrix and I − D jP is non-singular.

Definition 12. The time-homogeneous Markov chain (X,P) is
ergodic if, for all xi ∈ X, xi is aperiodic and positive recurrent.

Definition 13. For the time-homogeneous Markov chain (X,P),
the row vector π ∈ Rn with elements πi > 0, 1 ≤ i ≤ n, and
n∑

i=1
πi = 1 represents a stationary probability distribution over

X if π = πP. The elements πi, 1 ≤ i ≤ n, are then known as
stationary probabilities.

When the time-homogeneous Markov chain (X,P) is irre-
ducible and ergodic, it can be shown that a unique row vector of
stationary probabilities π > 0 exists that satisfies

πi = lim
t→∞

pi(t) =
1

E [Ti | X(0) = xi]
, 1 ≤ i ≤ n. (A.10)

Appendix B. Proofs

Theorem 1.

Proof. To show that (20) implies Markov chain rational be-
havior, consider the ratio of any πi to π j, i , j, where each
satisfies (20). Equation (19) follows immediately. To show
that Markov chain rational behavior implies (20), we begin

with
n∑

k=1
πk = 1. Dividing both sides of the equation by πi,

we obtain
n∑

k=1

πk
πi

= 1
πi
, 1 ≤ i ≤ n, which, using (19), yields

n∑
k=1

(
F(xk)
F(xi)

)N
= 1

πi
, 1 ≤ i ≤ n. Multiplying by F(xi)N and solving

for πi yields (20), which completes the proof.

Theorem 2.

Proof. We directly show that the row vector
π =

[
π1 π2 . . . πn

]
, where πi satisfies (20), is a left eigen-

vector of P, the matrix of transition probabilities for Γ, with
corresponding eigenvalue 1. If the matrix of generation proba-
bilities, γ, is symmetric, then γi j = γ ji, 1 ≤ i ≤ n, 1 ≤ j ≤ n, or
equivalently,

m∑
k=1

δi jk pk =

m∑
k=1

δ jik pk.

Consider the row vector v = πP. Then

v j =

n∑
i=1

πiPi j =

n∑
i=1
i, j

πiPi j + π jP j j,

=

n∑
i=1
i, j

πiPi j + π j

1 −
n∑

i=1
i, j

P ji

 ,
=

n∑
i=1
i, j

πiPi j + π j −

n∑
i=1
i, j

π jP ji.

From (20), (13), and (16), v j becomes

n∑
i=1
i, j

 F (xi)N

n∑
a=1

F (xa)N

F
(
x j

)N

F (xi)N + F
(
x j

)N

m∑
k=1

δi jk pk


+π j

−

n∑
i=1
i, j


F

(
x j

)N

n∑
a=1

F (xa)N

F (xi)N

F (xi)N + F
(
x j

)N

m∑
k=1

δ jik pk

 .
This reduces to π j because γ is symmetric. Hence, π = πP.
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Theorem 3.

Proof. We directly show that πiPi j = π jP ji for all i and j. If
the matrix of generation probabilities, γ, is symmetric, then
γi j = γ ji, 1 ≤ i ≤ n, 1 ≤ j ≤ n, or equivalently,

m∑
k=1

δi jk pk =

m∑
k=1

δ jik pk, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Consider πiPi j. Using (20), (13), and (16), we obtain

πiPi j =
F (xi)N

n∑
a=1

F (xa)N

F
(
x j

)N

F (xi)N + F
(
x j

)N

m∑
k=1

δi jk pk,

=
F

(
x j

)N

n∑
a=1

F (xa)N

F (xi)N

F (xi)N + F
(
x j

)N

m∑
k=1

δ jik pk,

= π jP ji, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

where the second equation uses the symmetry of γ. Hence, the
Markov chain representing the stochastic dynamics of the er-
godic selective evolutionary generation system is time-reversible.

Theorem 4.

Proof. We use Lyapunov’s Method and the LaSalle Invariance
Principle [97] to directly prove this theorem.

For the ergodic selective evolutionary generation system
Γ = (X,R, P,G, F) with a symmetric matrix of generation proba-
bilities γ, consider the discrete-time dynamic system described
by

p(t + 1) = p(t)P,

where P is the matrix of transition probabilities for Γ, and p(t)
is an n-dimensional row vector at time t. Here, p(t) is the er-
godic probability distribution over the states at time t, and there-
fore the components of p(t) satisfy pi(t) > 0, 1 ≤ i ≤ n, and
n∑

i=1
pi(t) = 1. Since the Markov chain underlying the selective

evolutionary generation system is ergodic and irreducible, a
unique equilibrium stationary distribution for these dynamics
exists, lim

t→∞
p(t) = π, with components πi satisfying (20).

Let us define q(t) = p(t)−π, so that the transformed discrete-
time dynamic system,

q(t + 1) = (q(t) + π) P − π,

has an equilibrium at the origin. The function

V(p(t)) = −

n∑
i=1

ϕi ln
(

pi(t)
ϕi

)
,

where ϕi satisfies (23), may be rewritten as

V(q(t) + π) = −

n∑
i=1

ϕi ln
(

qi(t) + πi

ϕi

)
.

We first check the value of this transformed candidate Lya-
punov equation at the origin of the transformed system. We
have

V(0 + π) = −

n∑
i=1

ϕi ln
(
πi

ϕi

)
= −

n∑
i=1

ϕi ln 1 = 0,

because π = ϕ.
Next, we have to show that ∀q(t) , 0, V(q(t) + π) > 0. But

this follows directly from (26). This is because ∀q(t) , 0,

V(q(t) + π) = −

n∑
i=1

ϕi ln
(

pi(t)
ϕi

)
,

which is always positive according to (26).
Now consider ∆V = V(q(t + 1) + π) − V(q(t) + π). In the

equations that follow, we assume, without loss of generality, that
the fitness value of each argument of the selective evolutionary
generation system is greater than or equal to one. (After all, if
there exists an i such that 0 < F(xi) < 1, then it is possible to find
a K ∈ R+ to scale all the fitness values upward, so that for all i,
KF(xi) ≥ 1. Define the new fitnesses F′(xi) = KF(xi), 1 ≤ i ≤ n
and observe that the Markov chain representation of the selective
evolutionary generation system is unchanged).

∆V = V(p(t + 1)) − V(p(t)),

= −

n∑
j=1

ϕ j ln
(

p j(t + 1)
ϕ j

)
+

n∑
j=1

ϕ j ln
(

p j(t)
ϕ j

)
,

= −

n∑
j=1

ϕ j ln
(

p j(t + 1)
p j(t)

)
,

= −

n∑
j=1

ϕ j ln


n∑

i=1
pi(t)Pi j

p j(t)

 ,
= −

n∑
j=1

ϕ j ln

 1
p j(t)

n∑
i=1

pi(t)F(x j)N

F(xi)N + F(x j)N

 ,
= −

n∑
j=1

ϕ j ln

F(x j)N

p j(t)

n∑
i=1

pi(t)
F(xi)N + F(x j)N

 .
Now because we have assumed, without loss of generality, that
all fitnesses are greater than or equal to one, we have

F(x j)N

p j(t)

n∑
i=1

pi(t)
F(xi)N + F(x j)N ≥

n∑
i=1

pi(t)
F(xi)N + F(x j)N

≥

n∑
i=1

pi(t)

≥ 1.

Therefore, we obtain

∆V ≤ −
n∑

j=1

ϕ j ln 1, or

∆V ≤ 0.
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That is, ∆V is negative semi-definite, as required by Lyapunov’s
method.

To apply LaSalle’s Invariance Principle, we have to find
Q = {q(t)|∆V = 0}. Note that

∆V = 0 = −

n∑
j=1

ϕ j ln 1 = −

n∑
j=1

ϕ j ln

 n∑
i=1

P ji

 ,
which can be rewritten with Bayes’ Rule as

∆V = −

n∑
j=1

ϕ j ln

 n∑
i=1

πi

π j
Pi j

 .
We had previously shown that

∆V = −

n∑
j=1

ϕ j ln


n∑

i=1
pi(t)Pi j

p j(t)

 .
Thus, ∆V = 0 implies that πi = pi(t), 1 ≤ i ≤ n. But from the
definition of q(t),

πi = pi(t) − qi(t),

and we must have that ∆V = 0 implies that qi(t) = 0, 1 ≤
i ≤ n. Therefore, the only solution of the transformed discrete-
time dynamic system that can stay identically in Q is the trivial
solution q(t) ≡ 0. Hence, the origin is an asymptotically stable
equilibrium for the transformed discrete-time dynamic system,
and therefore, the function

V(p(t)) = −

n∑
i=1

ϕi ln
(

pi(t)
ϕi

)
,

is a Lyapunov function for the original system with the set
of vectors p with components pi(t) > 0, 1 ≤ i ≤ n, and
n∑

i=1
pi(t) = 1 forming an invariant manifold. Moreover, since

the Lyapunov function is radially unbounded, the equilibrium is
globally asymptotically stable, as claimed.

Theorem 5.

Proof. We prove both parts of this theorem directly. Consider
that

ρi j

∣∣∣∣
N=0

=
−Nπiπ j

F(x j)

∣∣∣∣∣∣
N=0

,

=
−N

F(x j)
F (xi)N

n∑
k=1

F (xk)N

F
(
x j

)N

n∑
k=1

F (xk)N

∣∣∣∣∣∣∣∣∣∣∣
N=0

.

By substitution, ρi j

∣∣∣∣
N=0

is 0. Similarly,

ρii

∣∣∣∣
N=0

=
Nπi (1 − πi)

F(xi)

∣∣∣∣∣
N=0

,

=
N

F(xi)
F (xi)N

n∑
k=1

F (xk)N

1 − F (xi)N

n∑
k=1

F (xk)N


∣∣∣∣∣∣∣∣∣∣∣
N=0

.

By substitution, ρii

∣∣∣∣
N=0

is also 0.
For the second part of the theorem, we need the following

lemma.

Lemma 1. Let 0 < α < 1. Then lim
N→∞

NαN = 0.

Proof of Lemma 1.

lim
N→∞

NαN = lim
N→∞

N
α−N ,

= lim
N→∞

1
−(α)−N lnα

(by L’Hôpital’s rule),

= lim
N→∞

−αN

lnα
= 0.

Let I be the index for which F(xi) is maximized, and assume
that I is unique. Then,

lim
N→∞

F
(
x j

)N

F (xI)N = 0, ∀ j , I, and

lim
N→∞

n∑
k=1

F (xk)N

F (xI)N = 1.

Consider that

lim
N→∞

ρi j = lim
N→∞

−Nπiπ j

F(x j)
,

= lim
N→∞

−N
F(x j)

F (xi)N

n∑
k=1

F (xk)N

F
(
x j

)N

n∑
k=1

F (xk)N
,

= lim
N→∞

−N
F(x j)

F(xi)N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

F(x j)N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

.

Now for all i , j, where i , I and j , I, the application of
Lemma 1 with α =

F(xi)
F(xI )

implies that lim
N→∞

ρi j = 0.

If i = I , j, then the application of Lemma 1 with α =
F(x j)
F(xI )

implies that lim
N→∞

ρi j = 0.

Lastly, if i , j = I, then the application of Lemma 1 with
α =

F(xi)
F(xI )

implies that lim
N→∞

ρi j = 0.

Thus, for all i and j, lim
N→∞

ρi j = 0.

Similarly,

lim
N→∞

ρii = lim
N→∞

Nπi (1 − πi)
F(xi)

,

= lim
N→∞

N
F(xi)

F (xi)N

n∑
k=1

F (xk)N

1 − F (xi)N

n∑
k=1

F (xk)N

 ,

= lim
N→∞

N
F(xi)

F(xi)N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

n∑
k=1
k,i

F(xk)N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

.
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If i , I, then the application of Lemma 1 with α =
F(xi)
F(xI )

implies that lim
N→∞

ρii = 0.

If i = I, then we have

lim
N→∞

ρii = lim
N→∞

N
F(xI)

F(xI )N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

n∑
k=1
k,I

F(xk)N

F(xI )N

n∑
k=1

F(xk)N

F(xI )N

.

The application of Lemma 1 with α =
F(xk)
F(xI )

a total of n − 1
times implies that lim

N→∞
ρii = 0.

Thus, for all i, lim
N→∞

ρii = 0. This completes the proof.

Theorem 6.

Proof. To show that rational behavior implies that the time-
homogeneous, irreducible, ergodic Markov chain (X,P) is re-
sponsive, consider (36) and (37), which hold because the sta-
tionary distribution π has the closed form expression (20). By
Definition 5, πi > 0 ∀i since the Markov chain is ergodic, N > 0
since the Markov chain is selective, and F(xi) > 0 ∀i since the
fitness function is positive. Hence, ρi j , 0 ∀i and j, and (X,P)
is responsive. This completes the proof.

Theorem 7.

Proof. To show that ergodicity is a necessary condition for the
time-homogeneous, irreducible, ergodic Markov chain (X,P) to
be responsive, suppose that the chain is not ergodic. Then the
chain is either not positive recurrent (i.e., it is null recurrent or
transient) or it is periodic. If the chain is not positive recurrent,
then there exists a state, xi, with zero stationary probability.
Suppose now that the fitness function is perturbed such that the
fitness of this state, F(xi), becomes the optimal fitness value.
Since the stationary probability of xi is zero, state xi is never
visited, and therefore never considered as the optimizer. We
have ρii = ∂πi/∂F(xi) = 0, and hence (X,P) is not responsive. If
the chain is periodic, then the stationary probability distribution
does not exist, and responsiveness is not defined. This completes
the proof.

Theorem 8.

Proof. We first prove directly that σiI converges to a constant
value for each i as N approaches∞, before inductively showing
that the value of σiI does indeed decrease with increasing N.

We begin by noting that

lim
N→∞

Pi j = lim
N→∞

1

1 +

(
F(xi)
F(x j)

)N γi j,

=

γi j, if F(xi) < F(x j),
0, if F(xi) > F(x j),

and

lim
N→∞

Pii = lim
N→∞

γii +

n∑
j=1
j,i

1

1 +
( F(x j)

F(xi)

)N γi j


= γii +

n∑
j=1
j,i

F(xi)>F(x j)

γi j,

= 1 −
n∑

j=1
j,i

F(xi)<F(x j)

γi j.

Without loss of generality, assume that the elements of X
of the selective evolutionary generation system are ordered ac-
cording to decreasing fitness value, so that the index I = 1. The
matrix lim

N→∞
P is therefore a lower triangular matrix.

We seek

lim
N→∞

σ1 = lim
N→∞

(I − D1P)−1D11,

= (I − D1 lim
N→∞

P)−1D11,

where (I − D1 lim
N→∞

P)−1 always exists due to the following.

1. lim
N→∞

P is a lower triangular matrix with full rank. All of

the lower triangular elements are non-zero.
2. D1 is a lower triangular matrix with rank n − 1.
3. (D1 lim

N→∞
P) is a matrix with zeros in row one, and ele-

ments that are equal to lim
N→∞

P in all other rows. Hence,

(D1 lim
N→∞

P) has rank n−1. Since this matrix is the product

of lower triangular matrices, it is also lower triangular.
4. (I − D1 lim

N→∞
P) is a lower triangular matrix because it

is the difference of lower triangular matrices. All lower
triangular elements of this matrix are non-zero, with the
matrix element (I−D1 lim

N→∞
P)11 = 1. Thus, (I−D1 lim

N→∞
P)

has full rank.

Since (I − D1 lim
N→∞

P) is a lower triangular matrix with full

rank, the equation

(I − D1 lim
N→∞

P) lim
N→∞

σ1 = D11,

may be solved by the iterative process of forward substitution
to obtain unique constant values of lim

N→∞
σi1 for each i. For

instance,

lim
N→∞

σ11 = 0,

lim
N→∞

σ21 =
1
γ21

,

lim
N→∞

σ31 =

1 + γ32( lim
N→∞

σ21)

γ31 + γ32
=

1 +
γ32
γ21

γ31 + γ32
,

lim
N→∞

σ41 =

1 + γ42( lim
N→∞

σ21) + γ43( lim
N→∞

σ31)

γ41 + γ42 + γ43
,
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=

1 +
γ42
γ21

+ γ43

(
1+

γ32
γ21

γ31+γ32

)
γ41 + γ42 + γ43

,

and so on. This completes the convergence part of the proof.
We next use induction on the argument index to show that

σi1 is a strictly decreasing function of N. First, consider that

σ21 =

n∑
k=1
k,2

P2k (σk1 + 1) + P22

1 − P22
.

Hence,

lim
N→∞

σ21 = lim
N→∞

1 +
n∑

k=1
k,2

P2kσk1

1 − P22
,

=

lim
N→∞

1 +
n∑

k=1
k,2

P2kσk1


lim

N→∞
(1 − P22)

,

=

1 + lim
N→∞

 n∑
k=1
k,2

P2kσk1


1 − (1 − γ21)

,

=
1
γ21

+
1
γ21

lim
N→∞


n∑

k=1
k,2

P2kσk1

 .
Comparing this expression to the result that was calculated by

forward substitution above, lim
N→∞

n∑
k=1
k,2

P2kσk1 must decrease to 0

as N increases. Therefore, σ21 decreases as N increases.
For the induction hypothesis, assume that for any s−1 where

2 ≤ (s− 1) ≤ (n− 1), we have that for all t where 2 ≤ t ≤ (s− 1),
the mean hitting time σt1 decreases with N. We now show that
σs1 is a decreasing function of N.

Consider that

σs1 =

n∑
k=1
k,s

Psk (σk1 + 1) + Pss

1 − Pss
.

Hence,

lim
N→∞

σs1 = lim
N→∞

1 +
n∑

k=1
k,s

Pskσk1

1 − Pss
,

=

lim
N→∞

1 +
n∑

k=1
k,s

Pskσk1


lim

N→∞
(1 − Pss)

,

=

1 + lim
N→∞

 n∑
k=1
k,s

Pskσk1


s−1∑
k=1

γsk

,

=

1 + lim
N→∞

(
s−1∑
k=1

Pskσk1 +
n∑

k=s+1
Pskσk1

)
s−1∑
k=1

γsk

.

Comparing this expression to the general result calculated by

forward substitution, lim
N→∞

n∑
k=s+1

Pskσk1 must decrease to 0 as N

increases. By the induction hypothesis, we have lim
N→∞

s−1∑
k=1

Pskσk1

decreasing with increasing N. Therefore, σs1 is a decreasing
function of N.

Hence, for all i where 2 ≤ i ≤ n, an increase in the level of
selectivity produces a corresponding decrease in the mean hitting
time to the fittest argument, σi1, with lim

N→∞
σi1 approaching a

unique constant value for each i.
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