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Targeted clinical control of trauma patient coagulation
through a thrombin dynamics model
Amor A. Menezes,1,2 Ryan F. Vilardi,3 Adam P. Arkin,1,2,4* Mitchell J. Cohen5,6*

We present a methodology for personalizing the clinical treatment of severely injured patients with acute traumatic
coagulopathy (ATC), an endogenous biological response of impaired coagulation that occurs early after trauma and
shock and that is associated with increased bleeding, morbidity, and mortality. Despite biological characterization of
ATC, it is not easily or rapidly diagnosed, not always captured by slow laboratory testing, and not accurately repre-
sented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treat-
ment, forces surgeons to treat ATC patients according to empirical resuscitation protocols. These entail transfusing
large volumes of poorly characterized, nontargeted blood products that are not tailored to an individual, the injury,
or coagulation dynamics. Massive transfusion mortality remains at 40 to 70% in the best of trauma centers. As an
alternative to blunt treatments, time-consuming tests, and mechanistic models, we used dynamical systems theory
to create a simple, biologically meaningful, and highly accurate model that (i) quickly forecasts a driver of
downstream coagulation, thrombin concentration after tissue factor stimulation, using rapidly measurable concen-
trations of blood protein factors and (ii) determines the amounts of additional coagulation factors needed to rectify
the predicted thrombin dynamics and potentially remedy ATC. We successfully demonstrate in vitro thrombin con-
trol consistent with the model. Compared to another model, we decreased the mean errors in two key trauma pa-
tient parameters: peak thrombin concentration after tissue factor stimulation and the time until this peak occurs.
Our methodology helps to advance individualized resuscitation of trauma-induced coagulation deficits.
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INTRODUCTION
Trauma is the leading cause of death and disability between the
ages of 1 and 44 (1), with bleeding contributing to the vast majority
of these deaths (2). Such hemorrhage is a clinical problem that is
complicated by an endogenous biological response called acute trau-
matic coagulopathy (ATC) (3). ATC results in impaired coagulation,
increased bleeding, greater transfusion needs, and a fourfold increase
in mortality (3). After the initial phase of hypocoagulobility, ATC pa-
tients often dynamically transition to a hypercoagulable thrombotic state
manifested by excessive clotting (3). The resulting deep vein thrombosis,
myocardial infarction, stroke, and organ failure (4) all contribute to an
extremely poor outcome in patients who survive their initial injuries.

Despite considerable research (4) on the molecular mechanisms
of ATC, there remains a mechanistic and predictive knowledge gap
that stems from an inadequate understanding of coagulation mecha-
nisms after an injury and a lack of adequate prediction and real-time
decision support for clinicians who care for the severely injured. These
failings impede improvements to urgent resuscitation. Thus, there is a
need to characterize coagulation mechanisms in trauma patients and to
use this characterization to improve the precision of individual treatments.

In the absence of dynamic diagnostics and decision support,
current trauma resuscitation practices (4) center on the nontargeted
repair of the coagulation cascade (5) (Fig. 1A) and the production
of its principal protein thrombin through the transfusion of large vol-
umes of poorly characterized fresh-frozen plasma containing multiple
clotting proteins and inhibitors in concentrations that vary from unit
to unit. These urgent-care therapies indiscriminately actuate many in-
teracting elements of the coagulation process, resulting in variable un-
targeted treatment for every patient and with every administration,
which is further exacerbated by a lack of clarity about treatment effects
on the patient’s physiological and biological trajectories resulting from
the missing diagnostics and decision support. Such blunt treatment is
often either not enough (ATC and bleeding continue) or too much
(thrombosis occurs). Both of these extremes contribute to dysregulated
inflammation and poor outcomes (4). The mortality from massive
transfusion remains at 40 to 70% in the best of trauma centers (6).
Retrospective (7) and prospective (8) studies connect the blunt addition
of fresh-frozen plasma to poor outcomes, even when the plasma is
augmented with empiric ratios of platelets and red blood cells. Trans-
fusion of fresh-frozen plasma is independently associated with a higher
risk of multiple organ failure and poor outcomes in patients with hem-
orrhagic shock (9). Meanwhile, individual interventions consisting of
personalized blood protein factor concentrations that are tailored to
specific clotting perturbations have been shown to be beneficial (4), al-
though no consensus yet exists on the amount and type of coagulation
factors to administer. There is, however, a clinical desire for specific
blood products to treat trauma coagulopathy (10). In sum, in an era
of increasing personalized medicine, there is an urgent need for tar-
geted, patient-specific trauma coagulation therapies.

Current diagnostics and decision support suffer from a dearth of
patient-specific coagulation measurements. Although clinical practice
uses several global markers [international normalized ratio (INR), par-
tial thromboplastin time (PTT), prothrombin time (PT), platelet count,
fibrinogen concentration, etc.] to diagnose the presence of ATC, these
conventional coagulation tests are not enough to tailor a specific inter-
vention and support only the decision to administer plasma or not. Cell-
based viscoelastic tests are insufficiently predictive, and their use in
resuscitation algorithms also results in nontargeted treatment. Moreover,
1 of 11

http://stm.sciencemag.org/


SC I ENCE TRANS LAT IONAL MED I C I N E | R E S EARCH ART I C L E

 on January 4, 2017
http://stm

.sciencem
ag.org/

D
ow

nloaded from
 

these tests are slow (30 to 60 min). Such delays are critical, and longer-
term physiological outcomes and early deaths can be bettered and pre-
vented, respectively, by clinical interventions in the first minutes after
hospital admission (4). Therefore, there is a need for rapid provision
of key coagulation data, expected clotting outcomes, and specific inter-
ventions to clinicians.

To summarize, trauma patients die because clinicians cannot
quickly and accurately diagnose coagulation states and because tar-
geted treatment is currently impossible. A computational model can
mediate between biological understanding of coagulation kinetics and
trauma patient molecular and physiology measures to provide mech-
anistic understanding of trauma clotting and better therapy. However,
the number of physiological parameters affecting coagulation is large;
for instance, a popular model of clotting activity (11) that models
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
blood coagulation for hemorrhagic dis-
ease or venous or coronary thrombosis
in the absence of trauma and shock uses
43 chemical kinetic equations that are
parameterized with 42 rate constants
and results in a system of nonlinear ordi-
nary differential equations with 34 states.
This model excels at capturing much of
the known coagulation physiology mech-
anisms and average-case dynamics.
However, because of the remaining mech-
anistic uncertainty, likely individual and
trauma-induced variation in the under-
lying parameters, and the cost of fitting
and simulating such a model in a fast-
paced clinical environment, there are chal-
lenges in applying it effectively for quick
patient-specific assessment and prediction
of coagulation dynamics. We demonstrate
below some of the difficulties in fitting this
complex model to individual patient data.

Newer coagulation models also ex-
ist, as documented in the references of
(12) and (13). Most of these models re-
fine the one from (11) with kinetic equa-
tions that are a superset of the original
stoichiometrics, thereby increasing the
considered space of physiological param-
eters. Yet, these models still do not capture
all of the known physiology, nor is it clear
how to tailor their parameters to an in-
dividual trauma patient. Furthermore, the
existing uncertainties in model param-
eters and mechanisms cast doubt on pre-
dictions made in a clinical setting, reducing
model usefulness for direct clinical inter-
vention. In an attempt to capture all of
the known physiology, another coagulation
model, comprehensive in scope, accounts
for nearly every documented coagulation
effect and interaction stated in the litera-
ture; consequently, this model has 467 un-
known parameters (301 kinetic rates and
166 initial conditions) (14). Unfortunately,
this model’s large size increases simulation
duration (several days), difficulty (multiple nodes), and uncertainty.
Besides, all of these coagulation models are not validated on trauma
coagulation data. Thus, there is a need for a coagulation model that
captures trauma-clotting behavior and also substantially reduces the
considered space of physiological parameters while preserving clinical
meaning.

This paper begins to address all four outstanding trauma coag-
ulation needs: mechanism capture, treatment personalization, rapid
data provision, and dimension reduction. Our solution to the first and
last of these needs is illustrated in the simplified coagulation cascade in
Fig. 1B. Our work sets the stage for future targeted interventions that
realize in vivo trauma coagulation control and is a first step toward
enabling the administration of blood protein factors in model-determined
concentrations as clinical interventions to remedy trauma coagulopathy.
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Fig. 1. The coagulation cascade and our model’s simplification. (A) A schematic of the known coagulation
process. It can be considered as a dynamical system that has tissue factor concentration as an input, thrombin
(factor IIa) concentration as an output, and dynamics dominated by the concentrations of factors II, V, VII, VIII,
IX, X, and ATIII. These factors are rapidly measurable and are each highlighted by a color in the figure, with the
color choice having no specific connotation. Other factors are shown in gray. Factors are denoted by Roman
numerals, with the letter “a” if activated. (B) A simplification based on interpreting a completely observable
state-space realization of this paper’s transfer function model that captures assay behavior. The chief participants
are the tissue factor–VIIa complex, the Xa-Va complex, and thrombin.
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Figure S1 diagrams our process for developing a model of the
dynamical system that produces thrombin. We used an assay that
measures the thrombin dynamical system in a way that is suitable
for control-theoretic analysis. The calibrated automated thrombo-
gram (CAT) (15) is a fluorogenic assay that measures the time
history of thrombin generation in a blood sample upon the addi-
tion of (typically 5 pM) tissue factor (Fig. 2, A and B). All CATs have
an initial time delay, followed by a peak response of thrombin concen-
tration that decays to zero. Four parameters describe a CAT trajectory:
its displayed time delay (T), its peak thrombin concentration value (P),
the time at which this peak occurs (TP), and the area under the CAT
curve that indicates the total thrombin produced (IIatot).

The CAT is a useful tool (16), but it, like viscoelastic tests, is too
time-consuming to be useful for urgent care; the assay takes at least
40 min to measure and nearly an hour to complete. Even early termi-
nation of the procedure after 10 min (which does not fully accommo-
date the completion of the most severely delayed thrombin peak
responses) is not fast enough to provide a clinician with coagulation
data in the time it takes to wheel a patient to the operating room. In
addition, thrombin concentration alone is an uninformative output
measure that delivers only an approximation of mechanistic clotting
and the coagulation milieu driving observed dynamics, without pro-
viding information to a trauma clinician about protein factor targets
for patient-specific treatment. In practice, the CAT is currently used
only as a research tool or clinically as a Boolean indicator of the neces-
sity of patient coagulation improvement (based primarily on the loca-
tion of patient P and TP compared to a surgeon’s estimate of normal
P and TP). CAT output is one of several measures (such as PT, PTT,
and INR, which together also indicate an ongoing propensity for
excessive bleeding or clotting) that are combined with other patient
variables and surgeon experience to offer an educated guess of fu-
ture clotting behavior. An in silico dynamical system model that
speedily and accurately replicates CAT thrombin concentration output
from the rapidly measurable blood protein factor concentration values
may enhance the tool’s current clinical usefulness by supplying and
even leveraging model-based dynamic information.
uary 4, 2017
RESULTS
Patient characteristics
Our study used 20 plasma samples with all of their protein factor
concentrations within normal ranges, and we also used the blood of
40 severely injured trauma patients (whose characteristics are in
tables S1 and S2), which was drawn at the time when each patient
was admitted to San Francisco General Hospital. Among these samples
(tables S3 and S4), 37 of 40 samples had a factor deficiency of more
than 10% of the respective factor concentration of control mean plas-
ma, 31 of 40 samples had a factor excess of more than 10% of the
respective factor concentration of control mean plasma, 32 of 40
samples had a factor deficiency of more than 1 SD below the respective
factor concentration mean of the 20 normal plasma samples, and 39 of
40 samples had a factor excess of more than 1 SD above the respective
factor concentration mean of the 20 normal plasma samples.

Measurement of the thrombin dynamical system
Figure 2C shows in vitro CATs that were generated from the 20
normal and 40 trauma plasma samples. Most of the trauma CATs
in the sample have P > 0.2 mM, with peaks that surpass the aggregate
peak of the normal CATs (this means that most trauma CATs in the
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
sample are “thrombotic”), although a few have lower peaks (these
CATs are “hemorrhagic”). Figure 2D illustrates common trends in
the CAT parameters of normal and trauma patients. Distinguishing
between these two patient classes with linear classifiers is problematic
because of an overlap between normal and trauma CAT parameters,
which means that the two groups are not separated in CAT parameter
space. Additional computational approaches (Supplementary
Materials and Methods) reinforce this problematic classification (figs.
S2 and S3 and table S5). It can be assumed that the aforementioned
CAT measures do not fully capture all curve information. This as-
sumption is validated in this paper because two alternate sets of curve
measures are developed to better exploit a CAT, with these two sets
being a transformation of each other. Model-free machine learning
techniques applied to the measured factor concentrations (Supple-
mentary Materials and Methods) are also uninformative (figs. S4
and S5 and table S6). Figure 2E demonstrates the difficulty of directly
applying the coagulation model (11) for trauma using the measured
factor concentrations (implementation details are in Supplementary
Materials and Methods and table S7), because the model’s simulated
predictions of P and TP when compared to the trauma patient data
have a mean percent error of 57 and 204%, respectively.

Supplementary Materials and Methods provide methodological
background on the form (figs. S6 to S8 and table S8) of a suggested
linear time-invariant dynamical system model that can be fit (fig. S6G)
nearly perfectly to CAT trajectories. Despite not being mechanistically
derived, an alternative method interpretation in Supplementary
Materials and Methods is also a phenomenological model that
captures the mechanisms of the coagulation cascade in Fig. 1A by sim-
plifying it to Fig. 1B. Our model is further developed next.

Model determination: Identifying a thrombin dynamical
system model
Thrombin concentration over time may be viewed as the single output
y(t) of a linear time-invariant dynamical system, which takes tissue
factor concentration as a single input u(t) and which has dynamics
dominated by the concentrations of factors II, V, VII, VIII, IX, X,
and antithrombin III (ATIII; Fig. 1A). In the frequency domain, the
dynamical system output becomes Y(s) after applying the Laplace
transform to y(t). The tissue factor that initiates coagulation in a blood
sample until its quick depletion at CAT start may be considered an
impulse input that is applied to the thrombin dynamical system. Thus,
y(t) and Y(s) are equivalent to the impulse response of the system in
the time and frequency domains, respectively, that is caused by the
respective impulse input u(t) or U(s) (for example, a 5 pM impulse
at t = 0 min). A transfer function (17) model from tissue factor con-
centration (pM) to thrombin concentration (mM) with time delay T is

YðsÞ
UðsÞ ¼

b
s3 þ a2s2 þ a1sþ a0

e�sT ð1Þ

Five parameters have to be identified: a2, a1, a0, b, and T. The
transfer function without time delay in Eq. 1 is strictly proper, and
the degree of the denominator of this transfer function without time
delay (in other words, the degree of the “characteristic polynomial,”
which is three) indicates that a differential equation representation
of the system has three states. The five parameters of Eq. 1 may be
determined for each of the 20 normal and 40 patient CATs with a
near-perfect nonlinear least-squares fit (fig. S6G) of the system’s
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impulse response using MATLAB Simulink and the trust region–
reflective algorithm of the Simulink Design Optimization (SDO)
toolbox. A linear relationship exists between all identified b and
a0 (fig. S6H), which means that b = Ka0, where K is a constant. This
linear relationship indicates that Eq. 1 includes a traditional, four-
parameter, third-order system:

YðsÞ
UðsÞ ¼

Kp

sþ p

� �
w2
n

s2 þ 2zwnsþ w2
n

� �
e�sT ð2Þ

which is the product of a first-order system “low-pass filter” with time
constant 1/p and gain K and a second-order system with natural fre-
quency wn and damping ratio z. The damped frequency may be taken

to be wd ¼ wn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
. Defining s = zwn (that is, w2

n ¼ s2 þ w2
d),

we let A ¼ Kpw2
n

2 2; B ¼ �Kpw2
n

2 2; C ¼ Kpw2
nðp � 2zwnÞ

2 2; and
p � 2zwnp þ wn p � 2zwnp þ wn p � 2zwnp þ wn

Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
D ¼ B cos wdðt � TÞð Þ þ C � sB
wd

sin wdðt � TÞð Þ
� �

. Thus, each fitted

delayed CAT unit impulse response is given by

y tð Þ ¼ 0 if t < T�
Ae�pðt�TÞ þ De�sðt�TÞ

�
1ðt � TÞ if t≥T

�

for some p, z, wn, and T computed from a2, a1, a0, and T. The
thrombin dynamical system can be thought of as comprising two
subsystems, where the first subsystem outputs damped oscillations
of a natural frequency and the second subsystem filters these
damped oscillations above a cutoff frequency p.

The roots of the characteristic polynomial of Eqs. 1 and 2 are the
“poles” of the thrombin dynamical system; if roots of the numerator
in Eqs. 1 and 2 existed, these would be the “zeros” of the thrombin
dynamical system. Together with the gain, K, the poles and zeros
characterize a system’s input-output transfer function, and they
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Fig. 2. CAT overview, data set CATs, and trauma-
CAT prediction performance by another model.
(A) A CAT displays thrombin concentration over
time after a plasma sample has been stimulated
by tissue factor. A typical plot indicates a time delay
T that precedes the initiation of the thrombin con-
centration peak response, a peak thrombin concen-
tration value P at time TP, and the total thrombin
produced during clotting, IIatot. (B) A CAT can also
indicate delayed clotting, overclotting (a thrombotic
condition), or underclotting (a hemorrhagic condi-
tion) when compared to a reference normal plot.
(C) The CATs of 20 different lots of plasma having
all factor concentrations within a normal range
and the CATs of 40 trauma patients admitted to
San Francisco General Hospital (table S1 summarizes
patient characteristics). All CATs were generated
from blood sample stimulation with 5 pM tissue
factor. The trauma CATs show pronounced variabil-
ity in T, P, TP, and IIatot. Most of these trauma CATs
are thrombotic when compared to the normal CATs,
using a definition for a thrombotic CAT as a CAT that
has a P value that exceeds an upper bound of
normal P (here, defined as P > 0.2). If a thrombotic
CAT is instead defined with respect to the average
normal P, then 39 of the 40 trauma CATs are throm-
botic. (D) Plotting normal and trauma patient CAT
data together reveals common trends and suggests
the possibility of distinguishing between normal and
trauma CATs using linear classifiers in the parameter
space. However, this approach misclassifies some
hemorrhagic CATs as normal and some normal
CATs as trauma because of a lack of separation be-
tween the two groups in parameter space. (E) Pre-
dictions made by the Hockin-Mann model of
clotting activity (11) for trauma coagulation from
measured factor concentrations have substantial
mean error in P and TP for the 40 trauma patients
(57 and 204%, respectively). Implementation details
are in Supplementary Materials and Methods.
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correspondingly also characterize the dynamics represented by the
underlying differential equations. When the poles are in the open left
half of the complex plane, a dynamical system’s response is stable;
the system produces an output that is bounded for any bounded
input. Figure 3 (A and B) presents the poles of the fitted 20 normal
and 40 patient transfer functions without time delay, respectively. All
of these transfer functions have a pair of stable complex conjugate
poles as well as a stable pole located on the real axis, in accordance
with the pole diagram in Fig. 3C. Thus, p represents the value of the
pole on the real axis, and s and wd represent the value of the real and
imaginary parts of the complex conjugate pole pair, respectively. An
equivalent characteristic polynomial of the transfer function without
time delay in Eq. 2 is therefore

s3 þ ð2sþ pÞs2 þ ðs2 þ w2
d þ 2spÞsþ ðs2 þ w2

dÞp
¼ s3 þ ð2zwn þ pÞs2 þ ðw2

n þ 2zwnpÞsþ w2
np

ð3Þ

Poles and zeros may be located anywhere in the complex plane, but
their locations yield qualitative insights into the response of a dynam-
ical system. Figure 3 (A and B) shows that all complex conjugate pole
pairs of fitted thrombin dynamical systems are located at various
distances along the same two lines at a fixed angle to the real axis,
no matter the patient or type of injury. This implies that the coagula-
tion dynamical system is the same in normal and trauma patient plas-
ma, with any observed parametric differences caused by differences in
factor concentrations. As a result of the fixed angular locations, all
thrombin dynamical systems have fixed tan−1(wd/s), which is the an-
gle made with the real axis by the complex poles that have a negative
imaginary part, equal to fixing the damping ratio z. Thus, when
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
inferring a patient’s thrombin dynamical system from factor concen-
trations measured in a blood sample upon hospital admittance,
inferring p and wn and fixing z are fruitful. The effect of K, p, wn,
and T on y(t) is diagrammed in fig. S7 for a reference trajectory that
has transfer function values of the averages of K, p, wn, z, and T of the
fitted normal CAT transfer functions. The effects of changing a2, a1,
a0, and b are also depicted.

With fixed z and Eq. 3, z ≈ c ≈ s
wn

¼
a2�p
2 ffiffiffi
a0
p

p , or alternately,

ða2�pÞ2
4 ≈ c2 a0

p. This implies that an approximation of p is the real root
of the cubic equation p3 � 2a2p2 þ a22p� 4a0c2 ¼ 0, which suggests
that p is affected by a2 and a0, not a1. Also, wn ≈ a1p�a0

2cp2 , which sug-
gests that wn is affected by all three of a2, a1, and a0. These expressions
for p and wn map a temporal interpretation of coagulation to a control-
theoretic representation. As will be described below, a2, a1, and a0 are
tuned with the concentrations of various protein factors in the thrombin
dynamical system. This means that the natural frequency wn of the
second-order subsystem is also tunable, as is the cutoff frequency p
of the first-order filter. The thrombin regulation problem is thus one
of tuning these two subsystems.

Model construction and parameter estimation: Tuning the
thrombin dynamical system
We added the effects of protein factor concentrations to build up our
model. Increasing individual protein factor concentrations in normal
plasma samples and observing the corresponding CATs informed us
of the effect of protein factor “actuators” in controlling normal coag-
ulation. By virtue of the striking similarity between normal and trauma
control-theoretic parameter behaviors in Fig. 3 (A and B), we assumed
that stimulating normal plasma would also similarly actuate trauma
 on January 4, 2017
m

ag.org/
plasma. Exact replication of observed
CAT behavior by control-theoretic param-
eters should also confirm the determined
model’s suitability. Figure 3D data sum-
marizing tables S9 to S11 demonstrate
that all candidate actuators are inde-
pendent and therefore changing a single
protein factor concentration does not
change any other concentration (as illus-
trated in fig. S9).

The effects of concentration increases
of factors II, VIII, and X (table S12) are
of chief interest because factors V and
VII are too expensive for practical trau-
ma coagulation control and factors IX
and ATIII are too stiff, requiring large
concentration increases to alter CATs
(table S13). Sample experimental CAT
data for concentration increases of factors
II, VIII, and X in normal plasma are pres-
ented in Fig. 4 (A to C), respectively. Data
in Fig. 4D show the CATs of two normal
plasma samples that primarily differ only
in the concentration of factor V.

When considering CAT alterations
that are induced by increases in a protein
factor concentration, simulations in Fig.
4 (E to H) and experimental data in figs.
S10 to S13 indicate that the effects on
−0.5 −0.4 −0.3 −0.2 −0.1 0

−0.5

0

0.5

Real axis Real axis

Im
ag

in
ar

y 
ax

is

−1 −0.5 0
−2

−1

0

1

2

Im
ag

in
ar

y 
ax

is

A B

—
—

—
—

—
—

Fig. 3. The structure of the fits of normal and trauma CATs and factor addition independence. (A and B) Poles of
the fitted transfer functions without time delay. The three poles of each fit are shown with the same marker and color.
The scales of (A) and (B) are proportional so that a line in (A) has the same slope if plotted in (B) and vice versa. (A) All
poles of all fits of the 20 normal CATs. (B) All poles of all fits of the 40 patient CATs. (C) The orientation of the three poles
for each normal or patient fit. (D) Tabulated normalized means of the SD of protein factor percent activity (columns)
after various concentrations of a factor have been spiked into aliquots of a plasma sample (rows), calculated across
multiple normal plasma samples (n = 7 for factor II at three to seven spikes per sample, n = 5 for factor VII at three
spikes per sample, n = 6 for factor VIII at three to nine spikes per sample, n = 8 for factor IX at three to seven spikes per
sample, n = 9 for factor X at four to six spikes per sample, and n = 5 for ATIII at four to five spikes per sample; see table
S9). Experimental results in table S10 were normalized by the maximum nonspiked experimental reading for each factor
in all plasmas (table S11). The low values here confirm that changing the concentration of a protein factor does not
affect the concentration of any other protein factor in the sample with respect to that factor’s total experimental range
of movement.
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CAT parameters T, P, TP, and IIatot, the effects on temporal param-
eters a2, a1, a0, and b, and the effects on control-theoretic parameters K,
p, wn, and T are remarkably strongly linear albeit simultaneous. The
rationale for choosing control-theoretic parameters instead of temporal
parameters as the output of a modeled map from protein factor con-
centrations is that the set of control-theoretic parameters is the better
discriminator, because it achieves differing output trends when inputs
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
are varied. For instance (fig. S10, E to H),
increasing the concentration of factor VIII
increases all temporal parameters, and
increasing the concentration of factor X
causes identical behavior. However, in
control-theoretic parameter space, factors
VIII and X affect the delay differently;
increasing factor X decreases the delay,
which is independent of factor VIII (fig.
S10L). A second reason for avoiding the
temporal parameter space is its small dy-
namic range with respect to factor II, in-
creases of which cause drastic decreases in
already low parameters (fig. S10G) that
have a lower bound of zero.

Hence, for the control-theoretic param-
eter set, it follows from the observed rela-
tionships that linear classifiers using factor
concentrations can be inferred from all
normal and trauma patient data (in other
words, there is a sound motivation for
linear regression). Although noisy, this ap-
proach accounts for patient variability.

Model construction and parameter
estimation: Inferring the thrombin
dynamical system model
After imposing the average linear effects
observed with increasing concentrations
of II, VIII, and X in normal plasma, for-
ward stepwise linear regression can be
applied to the combined normal and pa-
tient data. The method consists of se-
quentially and greedily adding the linear
effect of a blood protein factor concentra-
tion measurement (excepting that of II,
VIII, and X) that most reduces the error
of a least-squares fit to all data for each
control-theoretic parameter. This process
is repeated until further linear additions
of factor concentration measurements
no longer significantly improve the fit.

A linear function of the measured
initial concentrations of factors II, V,
and ATIII predicts K, with absolute er-
rors averaging 25% (SD, 18%). This sug-
gests that inhibitors such as ATIII and
activated protein C (Fig. 1A) play a role
in tuning the gain. A linear function of
the measured initial concentrations of
factors II, VIII, X, ATIII, VII, and V pre-
dicts p with absolute errors averaging
16% (SD, 14%). The absolute coefficient values are largest for ATIII
and II and about equal for VIII, X, VII, and V. This suggests that p is
associated with the common pathway. The complex pole pair angle,
an alternate measure of the damping ratio, is a constant with mean
absolute error of 3.6% (SD, 3.5%). A linear function of the measured initial
concentrations of factors II, VIII, X, VII, and V predicts wn with absolute
errors averaging 41% (SD, 39%). Roughly equal weights on all coefficients
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Fig. 4. Emulation of CAT changes induced by factor perturbations. (A) CATs that result from spiking factor II
into aliquots of 1 of the 20 normal plasma samples, #14492, to increase that factor’s concentration to the values
shown. (B) CATs that result from spiking factor VIII into aliquots of 1 of the 20 normal plasma samples, #14492, to
increase that factor’s concentration to the values shown. (C) CATs that result from spiking factor X into aliquots of
1 of the 20 normal plasma samples, #14504, to increase that factor’s concentration to the values shown. (D) The
CATs of 2 of the 20 normal plasma samples, #14498 and #14507, which have all factor concentrations except factor
V nearly identical. Additional factor perturbation trajectories are in tables S12 and S13. (A to D) Because factor
increases cause linear albeit simultaneous effects on the set of four control-theoretic parameters (figs. S10, I to
L; S11, I to L; S12, I to L; and S13, I to L), a similar perturbing (in a positive and negative direction) of a reference
normal of averaged control-theoretic parameters according to the underlying trends should recapture the CAT
effects. (E) Increasing K and decreasing p, wn, and T result in trajectories similar to that of increasing factor II in
(A). (F) Increasing p and wn results in trajectories similar to that of increasing factor VIII in (B). (G) Increasing p and wn

and decreasing T result in trajectories similar to that of increasing factor X in (C). (H) Decreasing K, p, wn, and T
results in trajectories similar to that of increasing factor V in (D).
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suggest that wn reflects the contact activation and tissue factor pathway
effects on the common pathway. Lastly, a linear function of the measured
initial concentrations of factors II, X, IX, and V predicts T with abso-
lute errors averaging 22% (SD, 18%). The inferred factor V coefficients
are always negative, corroborating Fig. 4H. Fivefold cross-validation
on the set of 60 fitted transfer functions to validate the model regression
yields mean (for n = 12 in the test set) errors having a validation mean
(for five test sets) of 39% for P and 17% for TP. This outcome is com-
parable to that obtained when inferring with the full data set (Fig. 5).

Thus, given the initial protein factor concentrations in a trauma
patient’s blood sample at hospital arrival that can be measured
within a few minutes, the inferred functions represent a mapping
that ultimately determines the temporal parameters in Eq. 1. The
thrombin dynamical system can then be simulated to obtain the
patient’s thrombin CAT response to 5 pM tissue factor input. This
process constitutes a low-dimension clinically meaningful trauma
coagulation model that averages 0.05 s to compute in MATLAB,
which, even with the few minutes required for factor concentration
measurement, represents a substantial acceleration from the 40 to
60 min it takes to provide CAT information to a clinician. Figure
S14 proposes a clinical workflow.
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
Model prediction: Recapture of
known thrombin dynamical
systems when deployed as if
in clinic
To simulate the CAT response to 5 pM
tissue factor input in a patient’s blood
sample as if in a clinical setting, we
used the developed model form and
inferred model map to produce temporal
and control-theoretic parameters directly
from given initial protein factor concen-
trations (this is unlike the model’s devel-
opment, where these parameters were
obtained from fitting normal and patient
CATs). The accurate recapture of normal
and patient CATs in Fig. 5A from initial
protein factor concentrations almost re-
covers the near-perfect SDO fits to the
sample CAT data (such as fig. S6G), data
that take 40 min to produce. Accurate
CAT recapture in Fig. 5A is independent
of the type of trauma injury (as measured
by injury severity score or ISS), including
traumatic brain injury (TBI). A histo-
gram of the amount of error between
our model’s predictions and patient data
(Fig. 5B) confirms a substantial improve-
ment in trauma CAT prediction on the
inference data set over the popular model
(Fig. 2E) (11)—the mean percent error in
P is 31%, down from 57%, and the mean
percent error in TP is 22%, down from
204%—results that hold up with cross-
validation as described above.

Because our model was able to accu-
rately predict CAT dynamics from initial
protein factor concentrations, a follow-
on question concerned the prediction of
desirable dynamic changes by adding factors to the blood (factors II,
VIII, and X) to attain a “standard” CAT trajectory, a process that
would also further validate our model. The clinical implication of pre-
dictive factor addition is patient-specific control to potentially achieve
desirable coagulation outcomes.

Model prediction: Controlling the thrombin
dynamical system
We present an in vitro version of factor addition for patient plasma
sample control in two steps. The first step increases factor concen-
trations in plasma samples and proves an accurate model predic-
tion of changed dynamics, which also experimentally validates our
model for non–data set factor concentrations (concentrations that
were not used for inference in the previous section). The second step
relates to the prediction of concentration additions that achieve a desir-
able coagulation outcome, taking advantage of the linearity of our
model’s equations.

For the first step, we took plasma samples for which the model
already predicted CATs well (from the original inference data set)
and that had sufficient quantity for another assay, spiked in arbi-
trary amounts of factors II, VIII, and X to randomly increase their
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Fig. 5. CAT prediction performance. (A) Best-in-class CAT prediction from protein factor concentrations com-
pared to actual CAT for several different injury classes as measured by ISS: normal plasma sample #14488; low
injury severity in trauma patients #2797 and #2885; medium injury severity in trauma patient #2895; high injury
severity in trauma patients #2675 and #2771; and TBI is present in trauma patient #2771. (B) The predictive
performance for all trauma patients is much improved over (11), regardless of injury (compare to Fig. 2E). Here,
mean errors are 31% for P and 22% for TP.
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concentrations, and thereafter confirmed the model’s continued
CAT predictive power after measuring the new factor concentrations
in these samples, which were now no longer part of the inference data
set. Figure 6 demonstrates successful capture of postspiking trajectory
behavior for both normal and trauma plasma samples, with errors in
T being the most visible. The implication of the successful CAT
capture is that control-theoretic parameters can be accurately pre-
dicted by the model even for factor concentrations that are not a part
of the inference data set.

For the second step, consider that the internal model equations
constitute a system of four equations (for control-theoretic param-
eters) in seven variables (factor concentrations). If the model is
provided with a desirable CAT trajectory, then this provision is
equivalent to specifying the four control-theoretic parameters and re-
quiring the model to solve an underdetermined system with fewer
equations than unknowns, for which there could be infinitely many
solutions if a solution exists. The number of feasible solutions can
be reduced by eliminating those that specify decreased factor concen-
trations (these solutions are not physically realizable), those that are
expensive (for example, where a large amount of factor V is called
for), and those that are not achievable (because some factors are
not available in the emergency room). Hence, predicting increases
in concentrations of factors II, VIII, and X that are required to achieve
a desirable CAT trajectory amounts to examining the pseudoinverse
of the model’s linear expressions. In the case of the spiked CATs in
Fig. 6, where control-theoretic parameters are accurately predicted by
the model from factor concentrations even for non–data set inputs, a
solution to the inverse problem of providing control-theoretic param-
eters and asking for factor concentration increases obviously exists
(Fig. 6 is one such feasible solution). That is, if control-theoretic param-
eters from the measured spiked CAT trajectories of Fig. 6 are provided
to the model, then it follows that at least one solution to the linear
underlying expressions for factor concentrations is the one from which
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
the model was previously generating ac-
curate CATs. The successful validation
that is shown in Fig. 6 is analogous to
asking the model for one combination
of protein factor increases that approxi-
mate a measured CAT. Thus, Fig. 6 dem-
onstrates the likelihood of the model’s
ability (at least in vitro) to achieve a stan-
dard, desirable CAT trajectory.
DISCUSSION
Trauma-induced coagulopathy is multi-
factorial and remains incompletely char-
acterized. Despite the emerging importance
of fibrinolysis, platelet function, inflamma-
tion, etc., hemostatic resuscitation includes
the transfusion of either plasma-based or
prothrombin complex concentrate–based
fluids, with the former primarily contain-
ing coagulation factors and the latter
including concentrated coagulation fac-
tors. Hence, a central charge in trauma re-
suscitation is to “repair” thrombin-based
coagulation through nontargeted factor
administration.
This current approach to resuscitative care for a trauma patient
relies on protocols that guide the transfusion of large volumes of blood
products in a prespecified ratio. These massive-transfusion protocols re-
sult in both overresuscitation and underresuscitation depending on
the patient characteristics and clinical and biological dynamics. Few
patients do well with these nonpersonalized approaches to care, de-
pending on their fit to the nonspecific algorithmic care and to the
care team’s clinical judgment, which is why massive-transfusion
mortality remains at 40 to 70% in the best trauma centers (6). We
demonstrate that a control-oriented dynamical systems approach to
trauma coagulation results in a simple, accurate, quick, and mean-
ingful model that may eventually be used to personalize resuscitation
after trauma. We take advantage of the dynamics of a driver of
downstream coagulation, which is thrombin concentration change
over time after tissue factor stimulation. We show how the implicit
dynamical system can be inferred from concentration measurements
of coagulation proteins in a plasma sample that take a few minutes.
Our approach reduces the 40- to 60-min time that is required by the
CAT assay to measure this thrombin concentration change over
time. Our approach is feasible even if a combined assay is not yet
commercially available or if the measurements are not currently
cheap because the assays should become packaged and inexpensive
with more frequent use. With the inferred dynamical system, we
then predict and regulate thrombin dynamics.

The patient-specific model developed here captures the dynamics
of thrombin generation through a single-input (tissue factor concen-
tration), single-output (thrombin concentration), linear time-invariant
dynamical system, which has dynamics that are affected by the con-
centrations of the rapidly measurable blood protein factors in both
normal and trauma patients. The two implications are that the
underlying thrombin regulation is the same in both groups and that
the complex biochemical reactions underlying thrombin generation
combine to create a simple overall dynamical system that is controllable,
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Fig. 6. CAT prediction validation. The CAT prediction from protein factor concentrations compared to the actual
CAT for two normal plasma samples #14500 and #14501 and the trajectories from Fig. 5A for two trauma patient
samples with available plasma, #2895 and #2771. Arbitrary concentrations of factors II, VIII, and X (table S13) were
spiked into each of these four plasma samples. The model was able to capture the postspiking CAT behavior of
these samples despite non–data set factor concentrations, although errors in T were the most egregious.
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for instance, in an open-loop way by changing the concentrations of
some of the rapidly measurable blood protein factors. Closed-loop
control through tissue factor concentration change is not pursued in
this work because, for analytical simplicity, the value of input tissue
factor concentration is fixed at the typical 5 pM value that is used by
the CAT measurement tool.

We show that the thrombin dynamical system is composed of two
subsystems. The first subsystem generates damped thrombin oscilla-
tions at some natural frequency, and the second subsystem filters
thrombin oscillations above some cutoff frequency. The amount of
damping in a thrombin dynamical system always stays constant, re-
gardless of patient or trauma characteristics. Identical behavior in
normal plasma suggests that the thrombin dynamical system is the
same in a normal person and in a trauma patient, with any observed
parametric differences caused by differences in factor concentration.
After injury, the dynamical system itself remains the same as it was
before injury, without any additional mechanisms that might arise un-
der trauma conditions.

Increasing blood protein factor concentrations tunes the two
subsystems; specifically, the oscillation natural frequency and the filter
cutoff frequency are affected, as are the thrombin dynamical system
gain (output magnification) and the response delay. The implication is
that the clinical thrombin regulation problem involves appropriately
tuning the two subsystems by changing the subsystem parameters
with changes in factor concentrations.

Another interpretation of the two-subsystem oscillation-filter
understanding of the thrombin dynamical system is that there are
three underlying system states (where the term “states” is meant in a
control-theoretic sense) that undergo linear time-invariant dynamics.
These three states are thrombin, the Xa-Va complex (prothrombinase),
and the complex of tissue factor with VIIa; the latter two complexes are
already recognized as clinically important. Just as the oscillation-filter
understanding of the thrombin dynamical system is associated with
four control-theoretic parameters (oscillation natural frequency, fil-
ter cutoff frequency, gain, and delay), four temporal parameters are
associated with this equivalent interpretation.

When adding blood protein factor concentrations to the throm-
bin dynamical system to build up our model, the experimental data
indicate that the effects of each factor’s addition are independent;
changing the concentration of a protein factor does not affect the
concentration of any other protein factor. For practical reasons, we
focused on the tuning of factors II, VIII, and X. Strongly linear albeit
simultaneous effects are indicated on a set of four CAT parameters,
the set of four temporal parameters, and the set of four control-theoretic
parameters, with individual parameter effects being more distin-
guishable on the control-theoretic parameter set than on the tempo-
ral parameter set. The demonstrated strongly linear effects motivate
forward stepwise linear regression to account for the actions of the
other remaining quickly measurable factors V, VII, IX, and ATIII.
The resultant linear map from factor concentrations to control-theoretic
parameters distinguishes this model from contemporary nonlinear
stoichiometry-based models.

The ensuing estimated dynamical system can predict the time
history of thrombin concentration in a plasma sample after stimula-
tion by tissue factor more accurately than a popular nonlinear coag-
ulation model, for a variety of trauma conditions, on the data set used
for inference (cross-validated here). This estimated dynamical system
can also make accurate predictions for non–data set plasma samples.
Because of the linearity of the control-theoretic parameter prediction
Menezes et al., Sci. Transl. Med. 9, eaaf5045 (2017) 4 January 2017
equations, they can be simply and quickly inverted if control-theoretic
parameters for a desired CAT are provided. The pseudoinverse will
generate several possibilities of the seven input concentrations to
achieve the four stipulated control-theoretic parameters. Future hu-
man studies should provide insight into potential clinical impact of
these possibilities, with the least expensive possibility chosen in the
event of comparably beneficial options. Future guidelines should also
specify a desirable CAT profile (or a desirable sequence of profiles)
that represents an improved patient outcome for a presented CAT.
We have demonstrated the likelihood of our model’s ability (at least
in vitro) to make this desirable restoration through factor addition.

Five caveats are applicable to this work—two for the proposed
trauma treatment methodology and three for the described model.
First, because there are no guidelines for either a standard desirable
CAT trajectory or an appropriate sequence of trajectories to be
achieved by targeted clinical coagulation control to improve a trauma
patient’s condition, we only show that we can control clinically and
biologically relevant thrombin production, without specifying what
the control goal should be. The control goal will have to be chosen
to minimize thrombotic risk. Although it has been established else-
where (4) that affecting coagulation can result in improved survival
(and indeed represents the central tenet of current resuscitation
protocols), it remains to be experimentally determined and clinically
validated whether changing thrombin will result in improved survival.

Second, only in vitro control is demonstrated here, and it is
expected that the model will need modification for achieving in vivo
control objectives. Third, this work only investigates the tuning of the
thrombin dynamical system with the concentrations of factors II, VIII,
and X, leaving the effects of factor concentrations V, VII, IX, and
ATIII to inference. It is anticipated that a more comprehensive tuning
investigation that includes the missing factors will provide better
thrombin predictive insight. Fourth, the overall control authority
(thrombin tuning range and tuning capability) that is available with
all seven factor concentrations is an open question. Finally, our linear
time-invariant model is a local approximation of nonlinear thrombin
generation dynamics at an operating point of 5 pM tissue factor
concentration, although this value is a standard current experimen-
tal practice.

A larger study with more trauma patients that also includes the
missing factors is suggested as an immediate next step, to improve
the inferred linear estimation equations for control-theoretic param-
eters and to more fully validate thrombin concentration time-history
predictions. Next, it may be desirable to have a thrombin dynamical
system model that is valid over the entire input tissue factor concen-
tration range, which will facilitate thrombin concentration closed-loop
control by varying tissue factor concentration. Other recommenda-
tions for additional research include augmenting the model in this
paper to capture the results obtained from measures of functional
coagulation that are not thrombin-based (such as viscoelastic testing,
a cell-based measure) and to capture platelet function. In the longer
term, an improved coagulation model may be integrated into a point-
of-care device.

The most important enabler of our analysis was the CAT assay,
which, in control theory parlance, provided an impulse response
measurement of the underlying thrombin dynamical system. An im-
pulse response completely characterizes a linear time-invariant dy-
namical system (17). Once we realized that a vital control-theoretic
measurement was already in experimental practice through the
CAT test, we set out to exploit this information. We had to first show
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that linearity and time invariance held for the underlying system.
Perhaps unsurprisingly, we found that system linearity was true for
a CAT input value that is typically used in experiments, a value that
was probably informed by experimental intuition. Thereafter, we
applied known system identification ideas, including that of small
perturbations, to determine overall system behavior. This process
yielded startling linear results for the system’s CAT parameters,
temporal parameters, and control-theoretic parameters. We believe
that our approach is more broadly applicable to pathophysiology
and that similar approximations exist for complex biological processes.
The chief task is really the identification of a suitable control-theoretic
measurement (such as an impulse response or a step response) that
can be exploited. It is preferable that this measurement be either al-
ready in experimental use or obtainable from test apparatus that can
be quickly and cheaply put together.

Factor addition to change undesired thrombin dynamics is a tai-
lored approach to coagulopathy treatment that differs from the cur-
rent blunt practice of using empiric ratios of blood products and could
form the basis for targeted personalized treatment of bleeding after
injury. For a specific trauma patient, it will now be possible to outline
a sequence of desirable invoked thrombin production trajectories that
can be achieved by targeted clinical coagulation control, using the
provided thrombin dynamics model.
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MATERIALS AND METHODS
Study design
The 40 trauma patient blood samples were randomly selected from
among those that were collected by the ongoing Activation of Co-
agulation and Inflammation in Trauma investigation (which seeks
to prospectively characterize drivers of coagulation and outcomes
of severe traumatic injury and shock) and had sufficient quantity
for at least one experimental assay. Our study was blinded in that
patient demographics and outcomes were unknown until the com-
pletion of all work that is described in this paper. To construct a
model and estimate its parameters, we used a mix of experimental
perturbations and computational inference. Five biological repli-
cates were taken when perturbing factor II, 10 biological replicates
were taken when perturbing factor VIII, and 10 biological replicates
were taken when perturbing factor X. Perturbation experiment out-
liers were of two types. Either the factor perturbation caused a sample
to be so thrombotic that the generated measurement went off the scale
and its premature end precluded a fit to this incomplete measurement
or the structure of the fit (as depicted in Fig. 3, A and B) differed from
that of all 60 unperturbed normal and trauma measurements. Nine of
146 completed measurements of perturbed conditions for the model
construction process were such outliers (in other words, only 9 were
different from the other 197, consisting of the 137 perturbed and the
60 unperturbed). Before experimental model validation, the patient
ISS corresponding to blood samples that had sufficient quantity for
another assay were made known, and this was to ensure that the val-
idation samples had different ISSs.

All other materials and methods are provided in the Supple-
mentary Materials and Methods.
SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/9/371/eaaf5045/DC1
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Fig. S2. Lack of correlation between trauma patient characteristics and outcomes.
Fig. S3. Overlap of normal and trauma patient classes.
Fig. S4. Model-free machine learning techniques applied to measured factor concentrations.
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Supplementary Materials and Methods 
 

Measured CAT thrombin trajectory data are in units of nM. The time data are in minutes. 

The measured concentrations of blood protein factors II, V, VII, VIII, IX, X, and ATIII in each 

normal and trauma sample are expressed as a percentage of the mean concentrations in normal 

plasma. The INR reference range is 0.9 to 1.3. The PTT reference range is 28.0 seconds to 40.0 

seconds. The PT reference range is 11.6 seconds to 15.8 seconds. 

 

Computational approaches on calibrated automated thrombogram data and model-free 

machine learning techniques applied to factor concentration measurements 

From a patient’s measured CAT thrombin trajectory data, it is possible to extract 

parameters such as peak thrombin concentration , peak concentration time , delay  (by 

determining the intersection between the trajectory and the perpendicular to a tangent of the 

rising CAT half-peak, with the perpendicular also intersecting the time-intercept of that tangent), 

rise time , and area under the CAT curve IIatot. Fig. 2C indicates that the CAT trajectories 

of trauma patients tend to have a shorter time-delay , a faster thrombin burst, a faster thrombin 

decay, and more pointed trajectory peaks than normal CAT trajectories. Accordingly, we tested 

the possibility of separating CAT trajectories into the two patient classes via k-means clustering 

by using a four-dimensional space, with the dimensions being , the upslope of a CAT 

trajectory defined by P
TP −T( )

, the downslope of a CAT trajectory (under the assumption of a 

triangular shape) defined by P
2IIatot
P

− TP −T( )
, and the sampled second derivative of the CAT 

trajectory at time . 

Model-free machine learning techniques for differentiating trauma patient plasma from 

normal plasma based only upon initial concentrations of protein factors II, V, VII, VIII, IX, X, 

and ATIII consisted of: 

P TP T

TP −T

T

T

TP



1. K-means clustering of the 60 total normal and patient samples according to the seven 

concentrations.  

2. A principal component analysis with centering on all 60 samples followed by  

a. k-means clustering of the representation of the 60 samples in the principal 

component space using either the first two dominant components or the first three 

dominant components.  

b. support vector machines application to determine a non-linear curve in the space 

of the two dominant components that separates trauma patients from normal. 

The two dominant components of variance can be used in lieu of the measured initial 

concentrations of protein factors II, V, VII, VIII, IX, X, and ATIII in each patient blood sample 

for plotting together with patient demographics and outcomes to obtain three-dimensional visual 

depictions of each sample.  

Our implementation of the popular Hockin-Mann model (11) was validated with the 

results in (11) and checked for correctness by ensuring the equivalence of our implementation’s 

outputs with those produced by another implementation independently developed by colleagues 

at the University of California, Santa Barbara. To produce the simulation results that are 

summarized in Fig. 2E, our implementation of the Hockin-Mann model required initial 

concentrations for protein factors II, V, VII, VIII, IX, X, and ATIII to be in units of molarity, M, 

necessitating a units conversion of the values in table S2. The conversion factors that we used are 

listed in the fourth column of table S7. These conversion factors resulted from dividing the initial 

concentrations used in (11) for mean plasma (the third column of table S7) by the factor 

concentration percentage measurements of control mean plasma (the second column of table S7). 

 

Linear time-invariant approximation of the calibrated automated thrombogram for a 

standardized measurement input value 

There is a theoretical and modeling convenience to the current experimental practice of 

using 5 pM tissue factor concentration as a CAT input, which is suggested by an output 

trajectory’s shape. The CAT trajectories generated from various initial tissue factor 

concentrations yield insight into the linearity (or lack thereof) of the underlying thrombin 

dynamical system. A linear dynamical system is one where, for any two inputs  and  

that respectively generate outputs  and , the provision of a scaled input results in a 

u(t) v(t)

y(t) z(t)



  

similar scaling of the original output (for example, a  input produces a  output), and 

the provision of an input that is the sum of two other inputs results in an output that is itself the 

sum of the outputs that would individually result from each input [for example, an input of 

 generates an output that is ]. A nonlinear dynamical system is a 

dynamical system for which the definition of linearity is not satisfied. The advantages of linear 

dynamical systems include their description by relatively simple models that have a rich and 

well-developed analytical theory and their broad applicability wherever linearity holds, which 

imply that responses to a small set of inputs can be used for general output characterization and 

prediction in a larger region of the input space. The measured CAT trajectories in Fig. 2C 

produced by the thrombin dynamical system are also time-invariant: applying the typical 5 pM 

tissue factor concentration input after a delay  [in other words, providing ] generates a 

CAT trajectory that is identical to the one generated from the application of the original input 

, except that the output trajectory is additionally shifted in time by  [in other words, 

 is obtained instead of ]. 

Fig. S6A illustrates sample CAT trajectories that could be produced by an underlying 

thrombin dynamical system that is linear and time-invariant, using one possible model [for a 

system having thrombin concentration time-history as a single output  and tissue factor 

concentration time-history as a single input ] that is developed and analyzed in this work. 

The computed trajectories in fig. S6A show that the peak thrombin concentration  scales 

correspondingly with increases in tissue factor concentration, whereas the delay , the peak 

concentration time , and the rise time  all stay constant. Real data in fig. S6B show that 

the underlying thrombin dynamical system is nonlinear, because the experimental CAT behavior 

does not match fig. S6A when given scaled initial tissue factor concentration inputs of 1 pM, 5 

pM, 10 pM, 15 pM, and 20 pM (although the system is still time-invariant as explained above). 

Specifically, for the 20 normal plasma samples in our dataset and a pool of different non-injured 

plasma samples, the  and the  dependence on input tissue factor concentration (fig. S6C 

and D, respectively) is affine (linear plus a constant), the  dependence on the input (fig. S6E) is 

described by a power law, and the area under the CAT curve (fig. S6F) is twice the product of  

and . Nevertheless, a linear function without an offset can closely approximate  (fig. 

S6C), a constant-value fit of  and of  is a good approximation of an output caused by 

5u(t) 5y(t)

5u(t)+ v(t) 5y(t)+ z(t)

d u(t − d)

u(t) d

y(t − d) y(t)

y(t)

u(t)

P

T

TP TP −T

P TP −T

T

P

TP −T P
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inputs within a neighborhood of 5 pM of initial tissue factor concentration (fig. S6D,E), and 

twice the product of the no-offset  fit and the constant value  fit is still an adequate 

(within nearly one standard deviation) approximation of the IIatot that is generated by inputs near 

5 pM of initial tissue factor concentration. Thus, it is possible to approximate the thrombin 

dynamical system as a linear time-invariant one for inputs of about 5 pM of initial tissue factor 

concentration, which is the typical value. 

The implication of the approximated system linearity is that a relatively simple dynamical 

system model exists that takes tissue factor concentration input  to generate thrombin 

concentration output  when  5 pM, which is in direct contrast with the more involved 

and nonlinear current trauma coagulation modeling approaches [such as (11) and (14)]. In this 

study, a linear dynamical system model of trauma coagulation at a fixed input tissue factor 

concentration of 5 pM is produced, and it includes the ascertained dynamic effects of different 

blood protein factor concentrations. In particular, because it is possible to quickly (within a few 

minutes) measure the concentration of protein factors II, V, VII, VIII, IX, X, and ATIII in a 

blood sample that is taken from a trauma patient upon hospital admittance, it is desirable for a 

CAT model to use the concentrations of these seven factors. Incorporation of the role played by 

these factors in the model will facilitate the delivery of personalized concentrations that aim to 

correct a trauma patient’s predicted CAT by changing the clotting dynamics. Such delivery, 

which constitutes open-loop regulation of thrombin, differs from control via tissue factor, a 

process that necessitates concentration inputs where the system linearity approximation we use is 

not always valid. 

 
Model development methodology 

Model determination: identifying a thrombin dynamical system model 

Exponential functions are an important component of linear dynamical systems. It is 

possible to empirically approximate a CAT peak with a function that multiplies a positive power 

of time and a decaying time exponential (two examples are presented in fig. S6G). Suppose that 

the following non-delayed function approximates thrombin concentration: , where 

 and  are constants. This approximation will be justified shortly with traditional system 

identification and parameter-quantity minimization techniques. In the frequency domain, the 

dynamical system output becomes 

P TP −T

u(t)

y(t) u(t) ≈

y(t) = βt2e−αt

α β



  

  [4] 

after applying the Laplace transform to . 

The tissue factor that initiates coagulation in a blood sample until its quick depletion at 

CAT start may be considered an impulse input that is applied to the thrombin dynamical system. 

Thus,  and  are equivalent to the impulse response of the system in the time and 

frequency domains, respectively, that is caused by the respective impulse input  or  

(for example, a 5 pM impulse at  min). For the unit impulse , the corresponding 

thrombin transfer function from  to , , is the right side of [4]. 

Hence, a transfer function model from tissue factor concentration [pM] to thrombin 

concentration [µM] with time-delay  that is generalized to improve upon the depicted fit of 

in fig. S6G is 

 . [5] 

Five parameters have to be identified: , , , , and . The transfer function without 

time-delay in [5] is strictly proper, and the degree of the denominator of this transfer function 

without time-delay (the degree of the “characteristic polynomial,” which is three) indicates that a 

differential equation representation of the system has three states. If a function of form 

 (fig. S6G) is chosen as the first approximation instead of , the 

associated characteristic polynomial is second degree, which indicates a two-state differential 

equation system, and the transfer function with time-delay requires the identification of four 

parameters. Traditional system identification (18) techniques (for example, discrete-time 

autoregressive exogenous input, ARX, deployed with Matlab’s built-in functionality) applied to 

sampled CAT data demonstrate that a three-state model with a single numerator constant term 

satisfies the Akaike information criterion (AIC) (19), a two-state model with a single numerator 

constant term satisfies Rissanen’s minimum description length (MDL) principle (20), and models 

with four or more states overfit the data. Here, AIC and MDL are different criteria for upper-

bounding the degree of the characteristic polynomial and the number of numerator terms, while 

still ensuring model suitability through a minimization of output (fit) variance. Thus, models 

with more states than the number that satisfies a criterion will overfit (according to that 

Y (s) = 2β
(s+α)3

=
2β

s3 +3αs2 +3α 2s+α 3

y(t)

y(t) Y (s)

u(t) U(s)

t = 0 U(s) =1

U(s) Y (s) Y (s) /U(s)

T

y(t) = βt2e−αt

Y (s)
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=
b

s3 + a2s
2 + a1s+ a0

e−sT

a2 a1 a0 b T
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criterion’s interpretation) the applied data, and models with fewer states than the number that 

satisfies a criterion will be incomplete (according to that criterion’s interpretation), with greater 

unexplained output variance. Because we are not concerned with order size due to our model’s 

simplicity, we used the AIC criterion to choose between the models, selecting the order-three 

system in [5]. The five parameters of [5] may be determined for each of the 20 normal and 40 

patient CATs with a near-perfect nonlinear least-squares fit (fig. S6G) of the system’s impulse 

response using Matlab Simulink and the trust-region-reflective algorithm of the Simulink design 

optimization (SDO) toolbox.  

 

Model determination: alternate thrombin dynamical system modeling method 

One possibility out of infinitely many for the linear time-invariant differential equation 

dynamics that yield [5] after the application of the Laplace transform is the following state-space 

realization (21): 

  [6] 

which is the canonical “completely observable” realization that ensures that all three states , 

, and  affect the observed output , with realized system input . This  is 

the time-delayed input , since the tissue factor effect in fig. S6E puts  at the input. 

To interpret [6], consider the activation or inhibition of the protein factors in Fig. 1A and 

the reactions directly affecting or affected by these factors. First, because  is thrombin 

concentration, the output equation  of [6] implies that  represents the time-

history of thrombin concentration. Because the first differential equation of [6] shows in part that 

thrombin inhibits its own production at a rate , there is agreement with thrombin’s known 

roles in the production of inhibitory APC and reaction with inhibitory ATIII. This differential 

equation also indicates that the concentration of thrombin grows proportionally with , 

suggesting that the protein factor whose concentration time-history is represented by  is 

either Xa or the Xa-Va complex. Next, the input appears in the third differential equation of [6]. 

Thus, candidates for  are the concentration time-histories of tissue factor, the tissue factor-

!x1(t) = −a2x1(t)+ x2 (t),
!x2 (t) = −a1x1(t)+ x3(t),
!x3(t) = −a0x1(t)+ bv(t),
y(t) = x1(t),

x1(t)

x2 (t) x3(t) y(t) v(t) v(t)

u(t −T ) T

y(t)

y(t) = x1(t) x1(t)
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x2 (t)

x2 (t)
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VII complex, and the tissue factor-VIIa complex. These protein factors are depleted as more 

thrombin is produced, in accordance with the first part of this differential equation. Because the 

second differential equation of [6] relates the increase of  proportionally with , both 

candidates for  narrow  to the concentration time-history of the tissue factor-VIIa 

complex. Also, because , which implies that , the concentration 

of the tissue factor-VIIa complex can be thought of as being driven by the “error” between a 

scaling of the input tissue factor concentration and thrombin concentration, at rate . Lastly, the 

second differential equation suggests that thrombin inhibits  at rate , and  must 

therefore represent the concentration time-history of the Xa-Va complex.  

Hence, the dynamical model states of a completely observable realization may be related 

to the concentrations of thrombin, the Xa-Va complex, and the tissue factor-VIIa complex, with 

an input of tissue factor concentration and an output of thrombin concentration. Biologically, this 

model’s states correspond to the chief participants of the thrombin generation process. A 

simplified schematic of the known coagulation process in line with this model is provided in Fig. 

1B. Although the concentrations of the Xa-Va and tissue factor-VIIa complexes cannot be 

measured, the use of this model provides clinicians with computed dynamical estimates of the 

concentration behavior of these complexes upon clotting stimulation. Should these complexes 

become measurable, the ensuing measurements can help validate the model interpretation of this 

section. 

 

Model determination: implications of the control-theoretic parameters on tuning the thrombin 

dynamical system 

The control-theoretic parameters , , and  serve as k-means classifiers, rendering 

four distinct clusters when chosen by adjusted figure of merit scoring (fig. S8). The control-

theoretic parameters provide insight into the underlying dynamics. Although the equivalent 

temporal parameters , , , and  capture the known thrombin generation process (see 

above), the main text explains why the control-theoretic parameter representation of coagulation 

dynamics is better suited for modeling the effects of protein factor concentrations when 

compared to temporal parameters. Fig. S8 will thus ultimately represent visual insight into how 

coagulation dynamics could be changed, and hence, control-theoretic parameter controllability: 

x2 (t) x3(t)

x2 (t) x3(t)

b = Ka0 !x3(t) = a0 Kv(t)− x1(t)( )

a0

x2 (t) a1 x2 (t)

p ωn T
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the feasibility of moving parameters and the range of locations that are reachable from the 

starting points visualized there. Increasing any one factor concentration affects all control-

theoretic parameters together during tests of factors II, VIII, and X (see below and figs. S10-

S13), and by determining the parameter effects induced by the untested concentrations of factors 

V, VII, IX, and ATIII, it should be possible to ascertain the full range of feasible movement 

within the control-theoretic parameter space given an initial condition and to determine which 

factor concentrations need to be increased and by how much. 

 

Model construction and parameter estimation: tuning the thrombin dynamical system 

Measurements of the concentration of blood protein factors in normal plasma samples 

after an additional concentration of a single factor was spiked in (table S9) were collected to 

determine interdependence of factor concentrations, which would be revealed if other 

concentrations also increased or decreased simultaneously with the perturbed factor 

concentration. For each plasma sample that was spiked with various concentrations of a single 

factor, the standard deviation of the non-spiked factor concentrations was calculated. If the 

standard deviation of a non-spiked factor concentration were large, this would indicate a 

coordinated movement of that factor concentration with the spiked factor. Summary (mean) 

statistics for the standard deviation of non-spiked factor concentrations are presented in table S10 

and Fig. 3D. The latter table normalizes the data in the former table according to the 

normalization factors in table S11, which represent the maximum measured non-spiked 

concentration values in the normal plasma samples. Because the normalization factors used here 

are taken from normal plasma samples and are often less than the observed maximum factor 

concentrations in trauma plasma samples, we expect that the use of the latter would further 

diminish the values in Fig. 3D.  
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MODEL PRELIMINARIES MODEL DETERMINATION MODEL CONSTRUCTION MODEL PREDICTION 

 
• Find an assay (the CAT) to 

measure the coagulation 
dynamical system’s thrombin 
concentration output in a way 
that is conducive to control-
theoretic analysis, and find 
blood protein factors that 
affect the dynamical system 
and whose concentrations are 
rapidly measurable (factors II, 
V, VII, VIII, IX, X, and 
ATIII). 
 

• Determine the applicability of 
a particular instance of 
dynamical systems theory, 
which is when the considered 
dynamical systems are linear, 
so that the development of a 
relatively simple model form 
with a rich analytical 
foundation can be facilitated. 

 
• Show that this linear 

approximation is valid at the 
typical CAT operating point of 
5 pM of tissue factor 
concentration input. 

 
• To ascertain a 

phenomenological model of 
the trauma coagulation 
process, first identify a linear 
dynamical system model 
structure in the frequency 
domain whose output response 
matches the form of the CAT 
output for the same type of 
system impulse input. 
 

• Determine the model’s order, 
using AIC, MDL, and the 
quality of fits to measured 
CAT output data. 

 
• Analyze the fits to obtain 

insights into model form: here, 
that a two-subsystem 
composition having traditional 
control-theoretic parameters 
exists, and that the model form 
is applicable no matter the 
patient or type/presence of 
injury, with any observed 
parametric differences caused 
by differences in factor 
concentration. 

 
• Interpret the model in the time 

domain and show that there is 
compatibility with existing 
knowledge of the coagulation 
cascade. 

 

 
• Experimentally show how 

CAT output changes with 
factor concentration 
perturbations, how the changes 
are linear, and how these 
changes can be recapitulated 
with the control-theoretic 
parameters. This constructs a 
map between factor 
concentrations and control-
theoretic parameters. 
 

• Because the effects of 
perturbations are linear, use 
forward stepwise linear 
regression to infer the requisite 
map while imposing observed 
experimental relationships. 

 

 
• Verify that the developed 

model is able to accurately 
recapture the CAT trajectories 
of patients with different types 
of injuries. 
 

• Cross-validate this verification 
(using five-fold cross-
validation for inference 
mapping). 

 
• Experimentally validate (for 

both normal and trauma 
patient blood samples) that the 
developed model can predict a 
CAT when given non-dataset 
factor concentrations, which 
then also serves as a means of 
open-loop control. 

 

 
 
 

 
  MODEL DEVELOPMENT PROCESS 

 

 

Fig. S1. Summary of our model development process.  

 

  



  

 
Fig. S2. Lack of correlation between trauma patient characteristics and outcomes. The 

clinical characteristics that we evaluated were age, ISS, PTT, and INR, and the outcomes were 

CAT parameters peak thrombin concentration , rise time (where  is the time of the 

peak and  is a time-delay that precedes the initiation of the thrombin concentration peak 

response), delay , and the total thrombin produced during clotting, IIatot. The first row shows 

that  is not correlated with age (first column, R2 = 0.11), ISS (second column, R2 = 0.02), PTT 

(third column, R2 = 0.16), and INR (fourth column, R2 = 0.00), in that order.  Similarly, the 

second row shows that  is not correlated with age (R2 = 0.02), ISS (R2 = 0.02), PTT (R2 = 

0.03), and INR (R2 = 0.03), the third row shows that  is not correlated with age (R2 = 0.01), 

ISS (R2 = 0.03), PTT (R2 = 0.01), and INR (R2 = 0.00), and the fourth row shows that IIatot is not 

correlated with age (R2 = 0.10), ISS  (R2 = 0.01), PTT (R2 = 0.01), and INR (R2 = 0.00). 
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Fig. S3. Overlap of normal and trauma patient classes. (A) Normal and trauma patient classes 

overlap in a space of PT and PTT, which makes classification, for instance via k-means 

clustering in (B), problematic: although cluster 1 (blue) contains trauma patients only, cluster 2 

(magenta) includes both trauma and normal patients.   

20 25 30 35 4010

15

20

PTT [s]

PT
 [s

]

A

 

 
Normal
Trauma

20 25 30 35 4010

15

20

PTT [s]

PT
 [s

]

B

 

 
Cluster 1
Cluster 2



 
Fig. S4. Model-free machine learning techniques applied to measured factor 

concentrations. After a principal component analysis (PCA) with centering, the seven initial 

concentrations of protein factors II, V, VII, VIII, IX, X and ATIII in 20 normal and 40 trauma 

patient plasma samples have a primary principal component that explains 47.1% of total 

variance, a secondary principal component that explains 41.5% of total variance, and a tertiary 

principal component that explains 7.7% of total variance. These three component dimensions are 

plotted in (A), and only the first two are plotted in (B). In (C), two-cluster classification with k-

means is unable to recover the correct normal and trauma classification. (D) The machine 

learning technique called support vector machines can determine a non-linear curve in the space 

of the two dominant components that cleanly separates trauma patients from normal; this curve 

relies on support from three trauma patient vectors and four normal vectors. However, the 

separation is minimal, and work still remains on assigning meaning to the mapping from factor 

concentration space to principal component space, so that the effects of changes in factor 

concentrations on principal components can be known in advance, along with how to move 

trauma patients in the principal component space by factor addition.  
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Fig. S5. Lack of correlation between trauma patient characteristics and principal 

components. Trauma patient characteristics grouped by age (A), ISS (B), PTT (C), and INR (D) 

are not correlated with the two principal components that explain most of the variance in the 

measured concentrations of protein factors II, V, VII, VIII, IX, X and ATIII in each patient blood 

sample (R2 = 0.06, R2 = 0.01, R2 = 0.30, and R2 = 0.03, respectively). 
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Fig. S6. Linearity, justification, and fit of a thrombin dynamical system model. (A) Sample 

CAT trajectories produced by one possible linear time-invariant representation of the underlying 

thrombin dynamical system that is developed and analyzed in this work. For any inputs  and 

 to the clotting system  that produce outputs  and , 

respectively, the clotting system  is linear if , and it is 

time-invariant if . The inputs chosen here demonstrate the effects of the 

series , , , and , and show that  is scaled but that  and  are 

unchanged. (B) Despite time-invariance, the experimental CAT trajectories generated by initial 

tissue factor concentration inputs of 1 pM, 5 pM, 10 pM, 15 pM, and 20 pM applied to a pool of 
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normal plasma samples do not match the depicted (A) linear behavior. (C) Although  behavior 

is affine (linear plus an offset) (red biological replicates R2 = 0.99, blue technical replicates R2 = 

0.94), it can be closely approximated by a linear function without an offset to obtain (A) scaling 

behavior. (D) The rise time  is also an affine function of the input (red biological 

replicates R2 = 0.93, blue technical replicates R2 = 0.94), but a constant-value fit of the data as 

required by (A) is a good approximation in the vicinity of a standardized 5 pM input. Although 

such an approximation to obtain a linear dynamical system model precludes varying tissue factor 

concentration as a control actuator, such control is not tackled in this paper. (E) The delay  

(which was extracted from each CAT trajectory by determining the intersection between that 

trajectory and the perpendicular to a tangent of the rising CAT half-peak, with the perpendicular 

also intersecting the time-intercept of that tangent) is affected by initial tissue factor 

concentration via a power law (red biological replicates R2 = 1.00, blue technical replicates R2 = 

0.98). A constant-value fit of the data as required by (A) is also a good approximation in the 

vicinity of the aforementioned 5 pM standardized input. (F) IIatot is twice the product of  and 

, and is adequately captured (within nearly one standard deviation) around the 

standardized 5 pM input by a linear system assumption that uses the approximations of (C) and 

(D). (C)-(F) Error bars indicate the standard deviation. (G) A sample trauma CAT, which can be 

approximated by exponential functions that are an important component of linear dynamical 

systems, is approximated here by a function that is the product of time and a decaying time 

exponential as well as the product of squared time and a decaying time exponential. When the 

latter also includes a delay, it is possible to tune the function to fit the measured thrombin 

concentration data almost perfectly (R2 = 1.00 for this sample). (H) Fitted  parameters of all 

CATs are linearly related to their corresponding fitted  parameters; the parameters are marked 

without a line, whereas the least-squares linear relation is depicted as a line without any markers. 

The linear relation for the normal fitted CAT parameters overlies the linear relation for the 

trauma fitted CAT parameters almost exactly (R2 = 0.93 for normal CATs, R2 = 0.86 for patient 

CATs).  
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Fig. S7. Model control-theoretic and temporal parameter effects. (A)-(D) The effect of 

changes in model control-theoretic parameters on a reference average normal , plotted with 

a green dashed line. (A)  scales . (B)  primarily affects the overshoot of . (C)  

primarily affects the rise time and settling time of . (D)  shifts  in time. (E)-(H) The 

effect of changes in model temporal parameters on a reference average normal , plotted with 

a green dashed line. (E) shows that , (F) shows that , and (G) shows that  each affect 

 overshoot, settling time and secondary oscillations. (H)  scales .  
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Fig. S8. -means classification using control-theoretic parameters. (A) Control-theoretic 

parameters , , and  as k-means classifiers for four clusters. (B) Projection in the -  

plane. Most normal plasma samples belong to the medium delay, low natural frequency cluster. 

Like the CAT parameters in Fig. 2D, the control-theoretic parameters do not distinguish between 

normal and patient CATs. 

 

  

0 2 4 6

0
1

2
3

1

2

 

T [min]

A

p
 

ω
n

Low T
Med. T, Low ωn
Med. T, High ωn
High T

2 4 6 8 10 12
0.5

1

1.5

2

T [min]

ω
n

B

 

 
Low T
Med. T, Low ωn
Med. T, High ωn
High T

p ωn T ωn T

K



 

 
Fig. S9. Independence of factor addition to normal plasma. In (A), (B), (C), and (D), spiking 

factors II, VIII, IX, and X, respectively, into normal plasma sample #14492 does not 

substantially change the concentrations of the other non-spiked factors. Trend lines are included 

as a visual aid. Results for additional normal plasma samples are available in table S9. These 

experimental results disprove a seemingly coordinated increase in factor IX concentration with 

that of factor VIII in (B); see also tables S10 and S11. 
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Fig. S10. Parameter effects caused by increasing the concentration of factor II, VIII, or X 

in a sample of normal plasma. (A) Effect on peak thrombin concentration, red R2 = 0.98, green 

R2 = 0.97, blue R2 = 0.95. (B) Effect on rise time, red R2 = 0.58, green R2 = 0.89, blue R2 = 0.87. 

(C) Effect on delay, red decreasing, green no effect, blue R2 = 0.70. The delay shown here was 

extracted (just as in fig. S6E) from each measured CAT trajectory by determining the 

intersection between that trajectory and the perpendicular to a tangent of the rising CAT half-

peak, with the perpendicular also intersecting the time-intercept of that tangent. (D) Effect on 

total thrombin produced, red R2 = 0.93, green no effect, blue no effect. (E) Effect on , red R2 

= 0.95, green R2 = 0.72, blue R2 = 0.97. (F) Effect on , red R2 = 0.95, green R2 = 0.99, blue R2 

= 0.97. (G) Effect on , red R2 = 0.90, green R2 = 0.99, blue R2 = 0.98. (H) Effect on , red R2 

= 0.79, green R2 = 0.99, blue R2 = 0.98. (E)-(H) The trend lines for factor II also provide insight 

into why it is not possible to add much of this factor; increases in factor II cause all temporal 

parameters to decrease, but because these parameters are lower-bounded by 0, it is not possible 

to surpass this constraint. Here,  is the temporal parameter that first encounters the constraint. 

(I) Effect on gain, red R2 = 0.93, green no effect, blue no effect. (J) Effect on cut-off frequency, 

red R2 = 0.58, green increasing, blue R2 = 0.68. (K) Effect on natural frequency, red R2 = 0.96, 

green R2 = 0.98, blue R2 = 0.95. (L) Effect on SDO-fitted delay, red R2 = 0.73, green no effect, 

blue R2 = 0.71. The delay trends here are consistent with that shown in C.  
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Fig. S11. Parameter effects caused by increasing the concentration of factor II in five 

normal plasma samples. In five normal plasma samples, an increase in the concentration of 

factor II increases the CAT trajectory peak thrombin concentration  (A), increases the rise time 

 (B), decreases the delay  (C), and increases the total thrombin produced IIatot (D). A 

concentration increase of factor II decreases temporal parameters , , , and  in (E), (F), 

(G), and (H), respectively. An increase in the concentration of factor II increases the gain  (I) 

and decreases the cut-off frequency  (J), the natural frequency  (K), and the SDO-fitted 

delay  (L) [see also (C); additionally, inference results with the complete dataset confirm this 

conclusion]. 
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Fig. S12. Parameter effects caused by increasing the concentration of factor VIII in 10 

normal plasma samples. In ten normal plasma samples, a concentration increase of factor VIII 

increases CAT peak thrombin concentration  (A) and decreases the rise time  (B). The 

delay  (C) and the total thrombin produced IIatot (D) are unaffected. A concentration increase 

of factor VIII increases temporal parameters  (avg. R2 = 0.84),  (avg. R2 = 0.95),  (avg. 

R2 = 0.94), and  (avg. R2 = 0.95) in (E), (F), (G), and (H), respectively. An increase in factor 

VIII concentration does not affect the gain  (I). However, the cut-off frequency  (avg. R2 = 

0.79 in 7 samples with a trend) (J) and the natural frequency  (avg. R2 = 0.95) (K) increase. 

An increase in factor VIII concentration does not conclusively affect the SDO-fitted delay  

(L). 
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Fig. S13. Parameter effects caused by increasing the concentration of factor X  in 10 

normal plasma samples. In ten normal plasma samples, a concentration increase of factor X 

increases CAT peak thrombin concentration  (A), and decreases the rise time  (B) and 

the delay  (C). The total thrombin produced IIatot (D) is unaffected. A concentration increase 

of factor X increases temporal parameters  (avg. R2 = 0.89 in 9 samples with a trend),  (avg. 

R2 = 0.90),  (avg. R2 = 0.91), and  (avg. R2 = 0.90) in (E), (F), (G), and (H), respectively. 

An increase in factor X concentration does not affect the gain  (I), but the cut-off frequency 

 (avg. R2 = 0.81 in 9 samples with a trend) (J) and the natural frequency  (avg. R2 = 0.90) 

(K) increase, while the SDO-fitted delay  (avg. R2 = 0.84) (L) decreases. 
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Fig. S14. Proposed clinical workflow.  

Collect a blood sample from the patient, 
which is feasible due to the nature of the 
considered injuries. 

Rapidly measure the concentrations of 
protein factors II, V, VII, VIII, IX, X, and 
ATIII in the blood sample with functional 
factor activity measurements. 

Using the map that was inferred when the 
model was constructed, convert the 
measured factor concentrations to control-
theoretic parameters. 

Using these control-theoretic parameters, 
determine the linear dynamical system’s 
temporal parameters and then predict the 
CAT thrombin response to an impulse 
input of 5 pM tissue factor concentration. 

Compare the model-predicted CAT 
trajectory to some predetermined goal 
CAT trajectory. 

Again using the inferred map from factor 
concentrations to control-theoretic 
parameters, determine increases in factor 
concentrations that can alter the control-
theoretic parameters so that the response 
of the ensuing dynamical system to an 
impulse input of 5 is close to the goal 
CAT trajectory (in a least-squares sense). 
The increases are subject to the benefit 
and cost of adding certain factors (for 
example, factor V is currently expensive). 

Add the model-suggested factors (such as 
II, VIII, X) to increase the patient’s blood 
factor concentrations to the suggested 
amounts. 



Supplementary Tables 

 
Table S1. Summary of trauma patient characteristics. 

 
Characteristic Mean ± std. dev. or 

percentage (no. out of  40) 
Age (years) 43.5 ± 19.6 
Male/female 85% (34) / 15% (6) 
ISS 10.3 ± 10.6 
Blunt/penetrating injury 57.5% (23) / 42.5% (17) 
TBI not present/present 75% (30) / 25% (10) 
Alive/dead 90% (36) / 10% (4) 
PTT (s) 27.8 ± 3.7 
PT (s) 14.0 ± 1.4 
INR 1.1 ± 0.1 

 

 

  



Table S2. Normal and trauma patient plasma sample data (provided as an Excel file). 

Demographic and injury characteristics of 40 trauma patients admitted to San Francisco General 

Hospital, measured CAT thrombin trajectory data for the 20 normal and the 40 trauma patient 

plasma samples after stimulating with 5 pM of tissue factor, measured concentrations of blood 

protein factors II, V, VII, VIII, IX, X, and ATIII in each normal and trauma sample, and fitted 

temporal and computed control-theoretic parameters of all CATs. 

 

  



Table S3. Closeness of trauma patient factor concentrations to values from control mean 

plasma. In the table, -1 denotes a factor deficiency more than 10% of the respective factor 

concentration of control mean plasma, 0 denotes a factor within 10% of the respective factor 

concentration of control mean plasma, and 1 denotes a factor excess more than 10% of the 

respective factor concentration of control mean plasma. 

 
ID II V VII VIII IX X ATIII 

Control mean 
plasma value 87 80 87 92 91 90 88 

Control mean 
plasma range 78.3 - 95.7 72 - 88 78.3 - 95.7 82.8 - 101.2 81.9 - 100.1 81 - 99 79.2 - 96.8 

2543 0 1 -1 1 1 -1 0 
2575 0 0 -1 1 0 -1 1 
2580 -1 0 -1 1 1 -1 -1 
2597 -1 0 -1 1 0 -1 1 
2624 -1 -1 -1 -1 0 -1 0 
2634 -1 -1 -1 -1 1 -1 0 
2665 0 0 -1 1 1 0 1 
2668 0 1 1 1 1 1 1 
2675 -1 -1 1 -1 -1 -1 -1 
2711 -1 -1 -1 -1 1 -1 -1 
2714 0 -1 -1 1 1 -1 0 
2716 -1 -1 0 1 0 -1 -1 
2743 -1 -1 1 -1 -1 -1 -1 
2751 -1 -1 -1 -1 -1 -1 -1 
2771 0 -1 1 0 -1 0 1 
2772 -1 -1 0 -1 0 -1 -1 
2784 0 0 -1 -1 1 0 0 
2797 0 0 1 1 1 1 1 
2814 0 -1 0 -1 -1 0 0 
2816 -1 -1 -1 1 1 0 -1 
2817 -1 -1 -1 -1 -1 0 -1 
2819 -1 -1 1 -1 0 -1 0 
2827 -1 -1 1 -1 -1 -1 -1 
2829 -1 -1 -1 -1 -1 -1 0 
2841 -1 -1 1 -1 0 -1 0 
2843 -1 -1 0 -1 -1 -1 0 
2860 -1 -1 1 0 -1 -1 0 
2881 -1 -1 -1 0 1 -1 0 
2883 1 0 -1 1 1 1 0 
2885 -1 -1 -1 -1 -1 -1 -1 
2892 0 -1 1 1 1 1 1 
2924 1 -1 1 -1 1 -1 -1 
2767 0 0 1 1 1 1 0 
2818 0 -1 -1 -1 1 0 1 
2830 0 -1 1 0 0 0 -1 
2840 -1 -1 1 -1 -1 0 0 
2872 0 -1 1 -1 1 0 1 
2878 0 -1 -1 -1 0 -1 0 
2895 -1 -1 1 0 -1 -1 0 
2901 -1 -1 -1 -1 -1 -1 1 

 

  



Table S4. Closeness of trauma patient factor concentrations to means from 20 normal 

plasma samples. In the table, -1 denotes a factor deficiency more than one standard deviation 

below the respective factor concentration mean of the 20 normal plasma samples, 0 denotes a 

factor within one standard deviation of the respective factor concentration mean of the 20 normal 

plasma samples, and 1 denotes a factor excess more than one standard deviation above the 

respective factor concentration mean of the 20 normal plasma samples. 

 
ID II V VII VIII IX X ATIII 

Mean of 20 
normal samples 78.7 50.7 81.6 32.5 115.2 74.6 83.3 

One std. dev. 
range 67.1 - 90.3 34.4 - 66.9 63.8 - 99.4 25.0 - 40.0 91.9 - 138.5 61.5 - 87.7 73.2 - 93.4 

2543 0 1 -1 1 1 0 1 
2575 1 1 -1 1 0 0 1 
2580 -1 1 -1 1 0 -1 0 
2597 -1 1 -1 1 0 -1 1 
2624 -1 0 -1 1 -1 -1 0 
2634 -1 0 0 1 0 0 0 
2665 0 1 0 1 0 1 1 
2668 1 1 1 1 1 1 1 
2675 -1 -1 0 1 -1 -1 -1 
2711 0 -1 -1 0 0 0 -1 
2714 0 -1 -1 1 1 0 0 
2716 -1 0 0 1 0 -1 0 
2743 -1 0 1 1 -1 0 0 
2751 0 0 0 1 -1 0 0 
2771 0 0 1 1 -1 0 1 
2772 0 -1 0 1 -1 0 -1 
2784 0 1 -1 0 0 1 0 
2797 1 1 1 1 1 1 1 
2814 0 0 0 1 -1 0 1 
2816 0 0 0 1 0 0 0 
2817 0 -1 0 1 -1 1 -1 
2819 0 0 1 1 -1 0 0 
2827 -1 -1 1 1 -1 -1 -1 
2829 0 -1 0 1 -1 0 0 
2841 0 -1 1 1 0 0 0 
2843 -1 0 0 1 -1 0 0 
2860 -1 0 1 1 -1 -1 0 
2881 -1 -1 -1 1 0 -1 0 
2883 1 1 -1 1 1 1 1 
2885 0 -1 -1 1 -1 0 0 
2892 0 0 1 1 1 1 1 
2924 1 0 1 1 0 0 0 
2767 0 1 1 1 0 1 1 
2818 0 -1 -1 1 0 0 1 
2830 0 -1 1 1 0 0 0 
2840 0 0 1 1 -1 0 0 
2872 0 0 1 1 1 1 1 
2878 0 0 0 1 -1 0 0 
2895 0 0 1 1 -1 0 0 
2901 0 -1 0 1 -1 0 1 

 

  



 

Table S5. Unsuccessful -means classification of normal and trauma using four CAT 
dimensions. 
 

ID. NO. NORMAL (N) OR 
TRAUMA (T) 

K-MEANS 
CLUSTER NO. 

14488 N 1 
14489 N 1 
14490 N 2 
14491 N 2 
14492 N 1 
14493 N 1 
14494 N 1 
14495 N 2 
14496 N 1 
14497 N 1 
14498 N 2 
14499 N 2 
14500 N 2 
14501 N 2 
14502 N 1 
14503 N 2 
14504 N 2 
14505 N 2 
14506 N 2 
14507 N 2 

2543 T 1 
2575 T 1 
2580 T 1 
2597 T 1 
2624 T 1 
2634 T 1 
2665 T 2 
2668 T 1 
2675 T 1 
2711 T 1 
2714 T 2 
2716 T 1 
2743 T 1 
2751 T 1 
2771 T 1 
2772 T 1 
2784 T 2 
2797 T 2 
2814 T 1 
2816 T 2 
2817 T 2 
2819 T 1 
2827 T 1 
2829 T 2 
2841 T 2 
2843 T 1 
2860 T 1 
2881 T 1 
2883 T 2 
2885 T 1 
2892 T 2 
2924 T 1 
2767 T 2 
2818 T 2 
2830 T 2 
2840 T 2 
2872 T 2 
2878 T 1 
2895 T 1 
2901 T 1 

 

  

k



  

Table S6. Unsuccessful means classification of normal and trauma using seven 

concentrations, equivalent to using the first two and the first three principal components. 

 
ID. NO. NORMAL (N) OR 

TRAUMA (T) 
K-MEANS 

CLUSTER NO. 
14488 N 1 
14489 N 1 
14490 N 1 
14491 N 1 
14492 N 1 
14493 N 1 
14494 N 1 
14495 N 1 
14496 N 1 
14497 N 1 
14498 N 1 
14499 N 1 
14500 N 1 
14501 N 1 
14502 N 1 
14503 N 1 
14504 N 1 
14505 N 1 
14506 N 1 
14507 N 1 

2543 T 1 
2575 T 1 
2580 T 1 
2597 T 1 
2624 T 1 
2634 T 1 
2665 T 1 
2668 T 1 
2675 T 1 
2711 T 1 
2714 T 1 
2716 T 1 
2743 T 2 
2751 T 1 
2771 T 1 
2772 T 1 
2784 T 1 
2797 T 2 
2814 T 1 
2816 T 1 
2817 T 1 
2819 T 1 
2827 T 1 
2829 T 1 
2841 T 1 
2843 T 1 
2860 T 1 
2881 T 1 
2883 T 1 
2885 T 1 
2892 T 1 
2924 T 2 
2767 T 1 
2818 T 1 
2830 T 1 
2840 T 1 
2872 T 2 
2878 T 1 
2895 T 1 
2901 T 1 

 

-k



  

Table S7. Conversion factors used for Hockin-Mann model prediction of trauma CATs. 
 

Factor Control mean plasma 
percentage 

Hockin-Mann (11) 
initial concentration 

Conversion factor 
(Hockin-Mann initial 

concentration / control 
mean plasma 
percentage) 

II 87 1.4×10-06M 1.61×10-08M 
V 80 2.0×10-08M 2.50×10-10M 

VII 87 1.0×10-08M 1.15×10-10M 
VIII 92 7.0×10-10M 7.61×10-12M 
IX 91 9.0×10-08M 9.89×10-10M 
X 90 1.6×10-07M 1.78×10-09M 

ATIII 88 3.4×10-06M 3.86×10-08M 
 

  



  

Table S8. Thrombin dynamical system linearity testing data (provided as an Excel file). 

Three-trial measured CAT data resulting from stimulating a pool of non-injured plasma samples 

(different from the 20 normals) at various tissue factor concentrations, and the measured CAT 

data produced after stimulating the 20 normal plasma samples with 1 pM of tissue factor and 20 

pM of tissue factor. 

 

  



  

Table S9. Factor addition independence testing data (provided as an Excel file). 

Measurements of the concentration of blood protein factors in normal plasma samples after an 

additional amount of a single factor was spiked in. 

 

  



  

Table S10. Mean of the nonspiked factor concentrations across multiple normal 

plasma samples. 

 
Spiked II V VII VIII IX X ATIII 
II  6.4611 5.9633 6.8352 8.4848 4.9528 5.9496 
VII 4.4170 4.2520  12.3619 8.0849 14.3469 5.0000 
VIII 13.0065 5.8279 8.1578  15.9807 6.2259 4.6162 
IX 7.8506 8.6765 7.3919 7.6297  3.7638 8.0828 
X 15.3907 6.5694 8.4187 13.9994 7.6702  5.8404 
ATIII 6.0472 5.3016 8.4857 4.4789 9.3742 14.2680  

 
 

  

SD of 



 

Table S11. Maximum nonspiked factor concentration in normal plasma samples. 

 
 II V VII VIII IX X ATIII 
Normalization factor 206 155 203 178 281 300 175 
 
 
  



 

Table S12. Factor perturbation data (provided as an Excel file). Measured CAT thrombin 

trajectory data for normal plasma samples spiked with one of the factors II, VIII, or X, measured 

concentrations of spiked factors, and fitted temporal and computed control-theoretic parameters 

of these CATs. 

 

  



  

Table S13. Ancillary factor perturbation data and model validation data

l plasma samples that were spiked with factor V at  different tissue

factor concentrations, CAT trajectories for normal plasma samples that were spiked with factors 

, and CAT trajectory data and available factor concentration measurements

for those normal and trauma plasma samples that were spiked with arbitrary concentrations of factors

, and X to validate this paper’s model. 

 

II, VIII

IX and ATIII individually

CAT trajectories of norma

 (provided as an Excel file). 
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