
A Combined Seed-Identification and Generation Analysis Algorithm for
Self-Reproducing Systems

Amor Menezes and Pierre Kabamba

Abstract—This paper is motivated by the need to minimize
the payload mass required to establish an extraterrestrial
robotic colony. The basic premise is that the colony will consist
of individual robots that have the capability to self-reproduce.
In this paper, self-reproduction is achieved by the actions of
a robot on available resources. Hence, a seed for the colony
consists of a set of robots and a set of resources. The technical
problem addressed is the identification of a seed for a class of
generation systems. An algorithm is provided for the solution
of this problem, and is illustrated on a self-replicating system
that has been documented in the literature.

I. INTRODUCTION

SCIENTIFIC research conducted to explore the field of
self-reproduction has demonstrated much promise, with

the potential of significant impact on such diverse areas
as space colonization, bioengineering, evolutionary software
and autonomous manufacturing. This field owes much to
the efforts of John von Neumann [1], whose work on the
theory of automata in the 1940s and 1950s inspired extensive
research into the simulation and implementation of such
self-reproducing systems as: cellular automata, computer
programs, kinematic machines, molecular machines, and
even robotic colonies. A detailed overview of the research
activities in the field is presented in [2] and [3].
Von Neumann postulated the existence of a threshold of

complexity below which any attempt at self-reproduction was
doomed to degeneracy. However, he did not define either
complexity or degeneracy, nor did he go on to compute
the threshold’s value. An extensive literature survey in [4]
indicates that no one had published an evaluation of this
threshold in the following 60 years. Recently, [5] developed
a novel theory of generation that is able to compute this
von Neumann threshold. The results in [5] included a nec-
essary and sufficient condition for non-degenerate offspring,
i.e., offspring with the same reproductive capability as the
progenitor. Reference [6] presented a generalized version
of these results, and also demonstrated parallels with infor-
mation theory. The present paper extends these results by
providing an algorithm that identifies elements necessary for
the initiation of a given self-reproducing system.
The remainder of this section presents a rationale for seed-

identification, and surveys background material on Prob-
abilistic Generation Theory [6]. Section II discusses the
necessary assumptions and definitions for seed-identification,
before proceeding to outline a combined seed-identification

A. Menezes and P. Kabamba are with the Department of Aerospace En-
gineering at the University of Michigan, 1320 Beal Avenue, Ann Arbor, MI
48109, USA amenezes@umich.edu; kabamba@umich.edu

and generation analysis algorithm. Section III illustrates the
application of the algorithm to a self-replicating system
documented in [7] and [8].

A. Motivation

Within the context of extra-terrestrial colonization, current
phased approaches to Martian exploration see the devel-
opment of an enduring robotic presence on the Moon in
the next five years. Several space agency roadmaps, of
which [9] is typical, suggest that individual countries will
deploy advanced robots on an as-needed basis to expand
the size of an established colony. It is well known in the
aerospace community that for every unit mass of payload
to be launched into space, eighty additional units of mass
are required to be launched as well [10]. Instead, it would
be much more efficient to have robots endowed with the
capacity for self-reproduction. These machines would be able
to utilize available resources on-site to enlarge their numbers
when deemed necessary for a given task. Such technology
is not dependent on either the launch capabilities or the
fiscal constraints surrounding the multiple launches of robots
required for the colony, and therefore may provide a highly
cost-effective solution to the problem of establishing extra-
terrestrial colonies.
In order to minimize mass, it would be even more efficient

to recognize the required elements for the initiation of a self-
reproducing system, and send the smallest quantity of these
elements into space. The identification of this “seed” is the
goal of this paper.

B. Highlights of Probabilistic Generation Theory

We first state what is meant by the following terms that
will be used throughout the paper: reproduction, replica-
tion, self-reproduction, and self-replication. For a historical
perspective of the first two terms, the reader is referred
to Freitas’ excellent discussion on the subject in [2]. We
consider reproduction in biological systems to imply the
capacity for genetic mutations and the potential for evolution.
Thus from an information standpoint, reproduction involves
a change to the DNA code during the generation of progeny.
Likewise, we will take reproduction in an artificial generation
system to imply a change in the information specifications of
an offspring. We reserve the term replication for progeny that
have identical information content to that of the progenitor.
Self-reproducing and self-replicating will be used to refer
to those entities that perform the information equivalent
of asexual reproduction or mitosis, i.e., the entities can

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

ThA14.5

1-4244-0989-6/07/$25.00 ©2007 IEEE. 2582

reproduce or replicate based on the information specifications
of only one progenitor.
The theory surveyed here formalizes self-reproduction by

“machines,” a term describing any entity that is capable
of producing an offspring regardless of its physical nature.
Thus a robot, a bacterium, or even a piece of software
code is considered to be a machine in this theory if they
can each produce another robot, bacterium or some lines
of code respectively. These machines require resources to
self-reproduce, and each resource is chosen with some prior
probability. The selected resource is then manipulated by
the parent machine via an embedded generation action to
produce an outcome, which itself may or may not be a
machine. Thus we can state the following:
Definition 1: A Probabilistic Generation System is a quin-

tuple Γ = (U,M,R,P,G), where
• U is a universal set that contains machines, resources
and outcomes of attempts at self-reproduction;

• M ⊆U is a set of machines in the context described;
• R⊆U is a set of resources that can be utilized for self-
reproduction;

• P is a probability mass function (pmf) on R, that is,
R→ R with P[r] ∈ [0,1] and ∑i P[ri] = 1;

• G : M× R → U is a generation function that maps a
machine and a resource into an outcome in the universal
set, and not necessarily in the set of machines.

Furthermore, it is possible that M ∩ R &= ', and also
M∪R &=U , as illustrated in Fig. 1. The former implies that
machines can belong to the set of resources, and the latter
states that outcomes of attempts at generation may be neither
machines nor resources.

U

M R

Fig. 1. Pictorial representation of Definition 1.

One can define an indicator function, I, over a predicate,
p, such that:

I(p) = 1 i f p= True

I(p) = 0 i f p= False.

Thus, the probability of a machine x ∈ M processing a
resource r ∈ R to generate an outcome y∈U may be written
as:

P[y= G(x,r)] = ∑
r∈R

I(y= G(x,r)) ·P[r]. (1)

If, in (1), P[y= G(x,r)] > ε , where ε > 0, then we say that
“x is ε-capable of generating y,” and we call the process
ε-reproduction. If we have P[x= G(x,r)] > ε in (1), where

ε > 0, then we say that “x is ε-capable of generating itself,”
and we call the process ε-replication.
Of course, if we set ε = 0, then we allow every machine

to ε-reproduce no matter what resource is selected. This is
termed Free Generation. If ε = 1, then the deterministic
theory of generation proposed in [5] is recovered. This is
called Strict Generation or Unity Generation.
Definition 2: The Generation Sets in a probabilistic gen-

eration system are defined as:
• M0 =M, the set of all machines;
• Mε

i+1, the set of all machines that are ε-capable of
producing a machine of Mε

i , ∀i ≥ 0. That is, for x ∈
Mε
i+1, ∃ y ∈Mε

i such that P[y= G(x,r)] > ε .
These sets are nested with the innermost generation set

being important for self-reproduction. This set can be defined
as:

Mε
∞ =

∞
⋂

i=0
Mε
i . (2)

It is shown in [6] that generation always proceeds out-
wards. Also, the notion of the rank of a probabilistic gener-
ation system, as defined below, is emphasized.
Definition 3: The rank of a probabilistic generation sys-

tem, ρε(Γ), where Γ = (U,M,R,P,G) with generation sets
Mε
i , i≥ 0, is the smallest integer ρ such that Mε

ρ =Mε
ρ+1. If

∀i,Mε
i &=Mε

i+1, then the generation system has infinite rank.
For a probabilistic generation system of finite rank ρ ,

the nesting of the generation sets stop at the integer ρ . All
generation sets of order greater than ρ (up to and including
Mε

∞) are equal. A probabilistic generation system that has a
finite number of machines always has finite rank.
Definition 4: The rank of a machine, ρε(x), in a proba-

bilistic generation system Γ= (U,M,R,P,G) with generation
sets Mε

i , i≥ 0, and ρε(Γ) = ρ , is equal to i if x ∈Mε
i \Mε

i+1
(“deficient generation rank”), or is equal to ρ if x ∈

⋂∞
i=0Mε

i
(“full generation rank”).
Definition 5: An ε-generation cycle is a sequence of ε-

generations resulting in the production of a machine identical
to itself after n generations.
Machines capable of ε-replication (an ε-generation cycle

of order one) in a probabilistic generation system must
belong to Mε

∞, and any exit from Mε
∞ is irreversible. It is

possible for offspring machines to belong to Mε
∞ as long as

their progenitors do as well. Thus the requirements for non-
degenerate ε-reproduction and ε-replication are quantified. It
is proved in [6] that there is a minimum threshold of rank
above which a machine is able to ε-generate an offspring
without a decrease in generation rank. We call this the von
Neumann Rank Threshold, τεr , and define

τεr = ρε(Γ). (3)

The reader is referred to the material in [6] for proofs of
the above statements, as well as many other insights into the
information requirements of self-reproducing sytems.

ThA14.5

2583

II. SEED IDENTIFICATION

To formulate the seed requirements of a self-reproducing
system in a mathematically precise way, we first make some
assumptions about the nature of the probabilistic genera-
tion system. These assumptions help structure the seeding
problem but, in some cases, unfortunately make non-optimal
seeds possible as described.

A. Assumptions

We first assume that every resource in the set R of a
probabilistic generation system is utilized by a progenitor
machine so that another machine can be produced.
Assumption 1: Given a probabilistic generation system

Γ= (U,M,R,P,G), we assume that ∀r ∈ R,∃x ∈M such that
G(x,r) ∈M.
As we will see later, this assumption will simplify the se-

lection procedure of resources since it points to the condition
that all resources are necessary to ε-produce an offspring.
Hence, a seeding algorithm can simply identify all possible
resources as constituents of a seed. If we accept that all
resources are necessary however, then we allow ourselves
the possibility of selecting redundant resources. For instance,
if there exist two resources such that a progenitor machine
will produce the same offspring with each of those two
resources, then by taking both resources to belong to the
seed, a redundant selection has been made and the resulting
seed is non-optimal. We ignore this possibility and consider
it an avenue for future refinement.
We allow for complexity within the resource set, and

enable each resource to itself contain an ordered list of
physical elements that may include machines. We therefore
define a containment relation as follows.
Definition 6: If machine xi belongs to an ordered list of

the elements of resource r j, then we say that xi is contained
in r j , and we write xi ≺ r j , where “≺” is the Containment
Operator.
Of course, if machine xi is a resource itself, then this

relation still holds true.
Definition 7: If machines x1,x2, . . . ,xν are contained in

resource r, then we use the notation r\(x1,x2, . . . ,xν) to refer
to an ordered list of the elements of r that does not contain
the machines x1,x2, . . . ,xν .
Assumption 2: Given a probabilistic generation system

Γ= (U,M,R,P,G), we assume that if machine x is contained
in resource r, x≺ r, then the ordered list of the elements of
r that does not contain the machine x also belongs to the set
of resources, i.e., r\x ∈ R.
Next, we assume that every machine in the probabilistic

generation system has a progenitor machine.
Definition 8: A Surjective Generation System is a prob-

abilistic generation system Γ = (U,M,R,P,G) where ∀y ∈
M,∃x ∈M, and ∃r ∈ R such that y= G(x,r).
We further assume that there exists a machine in the

probabilistic generation system that is capable of producing
any machine in the system after m generations. This is a
special case of a surjective generation system.

Assumption 3: We assume that in the probabilistic gen-
eration system Γ = (U,M,R,P,G), ∃x1 ∈M such that ∀x ∈
M,∃µ0 ≤ µ ,∃r1,r2, . . . ,rµ0 selected from R such that

G(. . .G(G(G(x1,r1),r2),r3) . . . ,rµ0) = x.
We are now in a position to define the seed.

B. Problem Definition
Using the assumptions in Section IIA, we formalize the

definition of a seed as follows.
Definition 9: A seed of order k is a set

S = {x1}∪R0, where
R0 = {r1,r2, . . . ,rk}, and
R0 ⊆ R,

such that ∀x ∈ M,∃µ0 ≤ k,∃r1,r2, . . . ,rµ0 selected from R0
such that

G(. . .G(G(G(x1,r1),r2),r3) . . . ,rµ0) = x.
We design an algorithm to produce a seed as per the above

definition, and do not impose a restriction on the order of k.

C. Seed Identification Algorithm Methodology
Based on the assumptions of the probabilistic generation

system and the resulting seed definition, one possible seed
is the set containing all resources and a machine of highest
rank. However, a more sophisticated approach is possible,
one that takes into account the possibility that machines of
deficient rank (see Definition 4) can be used as resources
or even constitute them, and also the fact that machines
belonging to generation cycles or loops need to be isolated.
The approach to developing the Seed Identification Al-

gorithm is similar to the Generation Analysis Algorithm
(GAA) stated in [5], and in fact utilizes the GAA in its
operation. The GAA employs the concept of an outer layer,
first introduced in [5] and defined as follows.
Definition 10: In a generation system Γ = (U,M,R,P,G),

the outer layer is the set M0\Mε
1 . This is the set of machines

such that, no matter what resource they use, they produce an
offspring that is no longer a machine, i.e.,

{x ∈M : ∀r ∈ R,G(x,r) /∈M}.
After an outer layer is removed, a reduced order generation

system remains. The GAA works by peeling away the outer
layers of each of the generation systems Γi, 0 ≤ i ≤ ρ .
We apply a similar notion to the develoment of a seed
identification algorithm.
By Assumption 1, any resource that does not contain a

machine is assigned to be a part of the seed. Next, any
machines that belong to the outer layer of the probabilistic
generation system, the set M0\Mε

1 , are the machines of
lowest rank that will not help to perpetuate the system, and
hence belong to the set that is not the seed, S̄. Thus the outer
layer of the machine set needs to be identified.
Let M = {x1,x2, . . . ,xn} and consider the Descendancy

Matrix, defined as the n×n matrix of integers, D, such that

Di j = 1 if ∃r ∈ R : P[x j = G(xi,r)] > ε , (4)
= 0 otherwise, (5)

ThA14.5

2584

that is, Di j = 1 if machine xi is ε-capable of generating
machine x j, and Di j = 0 otherwise.
Now let R= {r1,r2, . . . ,rm} and consider the Containment

Matrix, defined as the n×m matrix of integers, C, such that

Ci j = 1 if xi ≺ r j, (6)
= 0 otherwise, (7)

that is, Ci j = 1 if machine xi is contained in resource r j, or
is indeed a resource itself, and Ci j = 0 otherwise.
Let the Seed Matrix, be defined as the n× (n+m) matrix

of integers, Σ, such that

Σ =
[

D C
]

. (8)

Then the set of resources that do not contain any machine
consists of those resources such that the corresponding
columns of matrix C are zero. These columns may be
removed from Σ, and the respective resources added to S. The
outer layer of M consists of those machines in the matrix D
that have corresponding rows of zeroes. These rows, and the
corresponding machine columns (even if not all zero), may
be removed from Σ, and the respective machines added to
S̄. If any of the removed machines exactly equal one of the
resources, then that corresponding column may be removed
from C as well.
We are now left with a reduced order probabilistic gen-

eration system, that can be seeded in a similar fashion. The
process of removing resources in the containment matrix,
followed by removing lower-rank machines in the descen-
dancy matrix and possibly in the containment matrix too,
can be repeated in order to deflate the seed matrix until there
are no more resources left to remove. For each iteration,
the columns of zeroes in the matrix C now denote those
resources that are devoid of lower-rank machines. Of course,
if a particular resource is nothing but a lower-rank machine,
then this algorithm removes it from consideration as a seed
resource.
Once the iterations are over, one of two conditions may

occur. It could be that all columns of the containment matrix
have been removed, leaving nothing but the descendancy
matrix. Thus all k resource elements of S have been found,
k ≤ m. If D can be further deflated, then this should be
continued in order to obtain x1, the machine of highest rank.
When deflations of D are no longer possible, the machine of
highest rank can be added as the x1 required by S. If several
machines are of equally high rank, then any one of these
machines may be selected as x1.
If, on the other hand, there are still resource columns left,

but they cannot be removed due to the presence of a 1,
then each resource can now be added to S as long as the
corresponding machine that the resource requires (the row
with the 1) is included. Assumption 3 guarantees that there
should be only one machine that the resources point to, and it
will be the required x1 for S. These conditions are obviously
satisfied if a remaining resource is a machine itself.
We summarize this algorithm in the next subsection.

D. Combined Seed Identification and Generation Analysis
(SIGA) Algorithm

Inputs: a generation system Γ = (U,M,R,P,G), where
M = {x1,x2, . . . ,xn} and R = {r1,r2, . . . ,rm}, satisfying As-
sumptions 1 through 3.
Outputs: the sets (M0\Mε

1), (Mε
1\M

ε
2), . . ., (Mε

ρ−1\M
ε
ρ),

Mε
ρ =Mε

∞, the von Neumann rank threshold τεr = ρε(Γ), the
seed set S, and its order k.
1) Compute the n× n matrix D, the n×m matrix C, and
the n× (n+m) matrix Σ.

2) Initialize i= 0, k = 0.
3) While R is not empty, and C has at least one column
of zeroes, and M is not empty, do:

• For each column of zeroes in C, add r j to S and
k = k+1.

• Update R by removing the resource elements cor-
responding to zero columns of C.

• Update Σ by removing the corresponding zero
columns of C.

• Return (Mε
i \Mε

i+1), the set of machines correspond-
ing to zero rows of D.

• UpdateM by removing the machines corresponding
to zero rows of D.

• Update Σ by removing the zero rows and corre-
sponding zero columns of D, and any columns in
C for which the resource exactly equals the machine
that has a zero row in D.

• i= i+1.
4) If R is empty then:

• While M is not empty and D has at least one row
of zeroes, do:
– Return (Mε

i \Mε
i+1), the set of machines corre-

sponding to zero rows of D.
– UpdateM by removing the machines correspond-
ing to zero rows of D.

– Update Σ by removing the zero rows and corre-
sponding zero columns of D.

– i= i+1.
• Return k.
• Return Mε

∞ =M
• If |Mε

∞| > 1 then pick an element of Mε
∞ to add to

S, else add machine in Mε
∞ to S.

5) If C does not have a column of zeroes then:
• For each remaining column in C, do:
– Add r j to S
– k = k+1
– Add the machine for which r j has a one in its
corresponding row to S.

– Update R by removing these resources.
– Update Σ by removing the last columns of C.

• While M is not empty and D has at least one row
of zeroes, do:
– Return (Mε

i \Mε
i+1), the set of machines corre-

sponding to zero rows of D.

ThA14.5

2585

– UpdateM by removing the machines correspond-
ing to zero rows of D.

– Update Σ by removing the zero rows and corre-
sponding zero columns of D.

– i= i+1.
• Return k.
• Return Mε

∞ =M.
6) Return τεr = i.
7) Stop.
The SIGA algorithm is guaranteed to stop after a finite

number of steps. Each while loop removes elements from a
set with finite cardinality, stopping once a set is depleted.

III. EXAMPLE APPLICATION OF THE SIGA
ALGORITHM

We can use Probabilistic Generation Theory and the SIGA
algorithm to analyze the Semi-Autonomous Replicating Sys-
tem designed by Chirikjian et al. [7], [8]. For a more accurate
analysis, let us consider this generation system under the
auspices of Strict Generation with ε = 1, since the designers
of the system require the prototype robot to construct a
replica of itself in a series of deterministic steps. To be
explicit, the sytem is designed in such a way that at any
given stage in the replication process, only one resource
has a probability of being selected, and that probability is
1. The pmf over the resources is dynamically updated at
each stage of the process, to reflect which resource now has
the probability of being selected. With I(y=G(x,r)) always
1, Strict Generation is a simplistic representation that also
allows us drop the ε in our notation.
Take M to be the set of all entities that are each made

up of two or more LEGO Mindstorm kit components fixed
together in some way. Let

M = {x1,x2,x3,x4,x5,x6}, and
R = {r1,r2,r3,r4,r5,r6},

where we define each of the constituent machines and
resources in the manner that follows. The sequence of
generation steps is also outlined. The replication process is
illustrated in Fig. 2.
x1 ! Prototype Robot
r1 ! (conveyor-belt/sensor unit, docking unit, electrical

connector, central controller unit (CCU), electrical cable)
x2 ! Chassis Assembly Station
x2 = G(x1,r1)
r2 ! (x1, chassis, robot control system (RCX))
x3 ! RCX-Chassis Assembly
x3 = G(x2,r2)
r3 ! Gripper Assembly Station ! (CCU, electrical con-

nector, ramp and lift system, gripper)
x4 ! Prototype Robot with Gripper
x4 = G(x1,r3)
x1 = G(x4,r3)
r4 ! (left LEGO hook, right LEGO hook, CCU, electrical

connector, stationary docking sensor, motorized pulley unit)
x5 ! Motor and Track Assembly Station

x5 = G(x4,r4)
r5 ! (motor/sensor unit, x3)
x6 ! RCX-Chassis-Motor Assembly
x6 = G(x1,r5)
r6 ! (x1, left LEGO track, right LEGO track, x6)
x1 = G(x5,r6)
r7 ! r2\x1 ! (chassis, robot control system (RCX))
r8 ! r5\x3 ! (motor/sensor unit)
r9 ! r6\(x1,x6) ! (left LEGO track, right LEGO track)

Fig. 2. The semi-autonomous replication process of the Suthakorn-Kwon-
Chirikjian robot [7].

It follows that we have the generation representation
indicated in Fig. 3.
With the SIGA algorithm,

D0 =

0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0

;

C0 =

0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

;

Σ0 =
[

D0 C0
]

;

so that r1, r3 and r4 can be immediately identified as part of
the seed. D0 can also be deflated, yielding

M0\M1 = {x3,x6}.

ThA14.5

2586

r1

r2

r3
r3

r4

r5

r6

x1

x2

x3

x4

x5

x6

(a) Generation diagram.

x2

x4x1 x5

x3 x6

M2

M0

M1

(b) Generation set structure.

Fig. 3. Representations of the Suthakorn-Kwon-Chirikjian semi-autonomous
replicating system, τr = 2.

We are left with

D1 =

0 1 1 0
0 0 0 0
1 0 0 1
1 0 0 0

;

C1 =

1 0 1
0 0 0
0 0 0
0 0 0

;

Σ1 =
[

D1 C1
]

;

so that r5\x3 = r8 now belongs to the seed, and also

M1\M2 = {x2}.

Since

C2 =

1 1
0 0
0 0

cannot be further deflated, we add r2\x1 = r7, r6\(x1,x6)= r9,
and x1 to the seed. Also,

D2 =

0 1 0
1 0 1
1 0 0

cannot be further reduced, giving us

M2 =M∞ = {x1,x4,x5}

and τr = 2. The seed set of order 6 for this system is

S= {x1}∪{r1,r3,r4,r7,r8,r9}.

We have thus arrived at a very logical, yet informative
result - the original robot (with and without the gripper) and
the final assembly station are the most important elements
of the semi-autonomous replicating system, and the original
robot is (of course!) needed to initiate the system, assuming
the existence of plentiful resources.

IV. CONCLUSIONS AND FUTURE WORK
A novel algorithm to identify the seed of a generation

system has been proposed. It utilizes the earlier Generation
Analysis Algorithm of [5], but expands the scope to consider
resources and their composition. It is capable of dealing with
machines of deficient rank that are used as resources, as well
as isolating a seed machine from a generation cycle or loop.
The avenues for current and immediate future research

include investigating the relationship between the rank of a
probabilistic generation system and the size of the seed, and
developing the necessary and sufficient conditions to produce
an optimal seed. This also gives rise to the issue of control;
specifically, how does one control the rank of a generation
system to produce an optimal seed? With the theory in place
to analyze generation systems, the next step is to develop
theory to synthesize generation systems.
The SIGA algorithm needs to be extended to 1) allow for

the determination of a seed of order k, with k pre-specified;
2) incorporate some notion of the quantity of a seed resource
needed to perpetuate a system; 3) recognize and compensate
for time constraints that may impose a larger-size seed upon
the system; and 4) eliminate any redundant resources. These
four apparent limitations will be overcome in future work.

REFERENCES
[1] J. von Neumann, Theory of Self-Reproducing Automata, A. Burks, Ed.

University of Illinois Press, 1966.
[2] R. A. Freitas Jr. and R. C. Merkle, Kinematic Self-

Replicating Machines. Landes Bioscience, 2004. [Online]. Available:
http://www.molecularassembler.com/KSRM.htm

[3] M. Sipper, “Fifty years of research on self-replication: An overview,”
Artifical Life, vol. 4, no. 3, pp. 237–257, 1998.

[4] P. Owens and A. G. Ulsoy, “Self-replicating machines: Preventing
degeneracy,” The University of Michigan, Tech. Rep. CGR-06-02,
2006.

[5] P. Kabamba, “The von neumann threshold of self-reproducing systems:
Theory and computation,” The University of Michigan, Tech. Rep.
CGR-06-11, 2006.

[6] A. Menezes and P. Kabamba, “Information requirements for self-
reproducing systems in lunar robotic colonies,” in Proceedings of the
57th International Astronautical Congress, no. IAC-06-A5.P.04, 2-6
October 2006.

[7] G. S. Chirikjian, Y. Zhou, and J. Suthakorn, “Self-replicating robots
for lunar development,” IEEE/ASME Transactions on Mechatronics,
vol. 7, no. 4, Dec. 2002.

[8] J. Suthakorn, Y. T. Kwon, and G. S. Chirikjian, “A semi-autonomous
replicating robotic system,” in Proceedings of the 2003 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and
Automation, July 2003.

[9] B. Foing, “Roadmap for robotic and human exploration of the moon
and beyond,” in Proceedings of the 56th International Astronautical
Congress, no. IAC-05-A5.1.01, 17-21 October 2005.

[10] J. R. Wertz and W. J. Larson, Eds., Space Mission Analysis and Design,
3rd ed. Microcosm Press, 1999.

ThA14.5

2587

