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Abstract— This paper extends a technique that solves a
generalization of the standard global optimization problem:
instead of generating the optimizer, the technique produces, on
the search space, a probability density function referred to as
the behavior. The generalized solution depends on a parameter,
the level of selectivity, such that as this parameter tends to
infinity, the behavior becomes a delta function at the location of
the optimizer. The motivation for this generalization is that tra-
ditional off-line global optimization is unresponsive to perturba-
tions of the objective function. Although the original technique
achieves responsive optimization, a large number of iterations
may be required. In most instances, the extended technique
of this paper, which is known as multi-selective generation,
averages fewer iterations to achieve responsive optimization.
Multi-selective generation is formulated here to generalize the
canonical genetic algorithm with fitness proportional selection.
Necessary and sufficient conditions that are required by multi-
selective generation to achieve so-called rational behavior are
specified. Rational behavior is desirable because it can lead to
both efficient search and responsive optimization. However, the
conditions for the extended technique to behave rationally are
highly restrictive. The implication is that the original technique,
which behaves rationally, is preferable for efficient search and
responsive optimization.

I. INTRODUCTION

A. Motivation, Goals and Contributions

THIS paper considers the problem of behavior design,

which, for a real-valued reward function F : D → R,

seeks 1) a probability density function (referred to as the be-

havior) φX : D → R
+ that accomplishes specified objectives,

and 2) dynamic transition laws that cause the variable x to

be distributed according to φX , i.e., to exhibit the behavior

specified by φX .

A well-known particular case of behavior design is off-

line optimization, where the sought behavior consists of a

delta function at the location that optimizes the reward func-

tion. Off-line optimization techniques [1], however, are non-

responsive to perturbations of the reward function. Specif-

ically, small changes in the reward function may require

changes in the behavior when the optimizer depends con-

tinuously or discontinuously on the perturbation. Hence, the

motivation for behavior design is that in practice, the reward

function on which a candidate optimizer is implemented may

be different from that for which the candidate’s behavior was

designed.

On-line optimization methods [2] that are more respon-

sive than their off-line counterparts typically consist of

the sequential repetition of off-line optimization techniques.
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However, such sequential repetitions are computationally

expensive, a fact that may be shown by either an amortized

analysis [3] or a competitive analysis [2]. Reference [4]

presented a behavior design technique that is computation-

ally inexpensive, yields behaviors that are responsive, and

employs a scheme that is efficient in that it trades off

prior information about the search space for search effort

savings as quickly as possible. This technique, which utilizes

a Selective Evolutionary Generation System (SEGS), was

shown to differ from most other evolutionary computation

approaches; in fact, the Canonical Genetic Algorithm with

Fitness Proportional Selection (CGAFPS) [5] and the (1+1)

evolutionary strategy [6] are particular cases of the technique.

Unfortunately, a SEGS may require a large number of

steps to generate a candidate whose reward (or fitness)

exceeds a threshold. Therefore, one goal of this paper is to

extend the work of [4] so that responsive behavior design

is inexpensively attained in fewer iterations, on average.

The increased speed is particularly important for the finite-

horizon problem, when a fit candidate must be found within

a pre-specified number of algorithm iterations.

Another goal of this paper is to analyze the behavior de-

signed by the CGAFPS, through its use of rational behavior

[7]. The primary benefit of employing rational behavior is

its capacity for optimal search, where optimality is defined

as the quickest possible prior information trade off for

reduced search effort. A secondary benefit is that rational

behavior, when applied to Markov chains (see Section III),

is a sufficient condition for responsiveness [4]. To facilitate

the analysis, we develop the requisite extension of a SEGS

so that the technique in this paper generalizes the CGAFPS.

We show that the conditions for the extended technique to

achieve rational behavior are highly restrictive, and that there

are instances when a SEGS technique finds fit candidates

faster than the extended technique.

The implication is that the SEGS scheme in [4], which

also employs rational behavior, is more generally applicable

for efficient search and responsive behavior design than the

extended scheme and the CGAFPS. Hence, the CGAFPS

must be modified for use in optimization with dynamic

fitness landscapes if rational behavior is desired. However,

we also show that the extended technique (and hence the

CGAFPS) typically find fit candidates faster than a SEGS;

this trade-off is consistent with the No Free Lunch theorem

for optimization [8].

B. Background and Technical Approach

Reference [4] proposed an on-line behavior design tech-

nique based on the novel concept of selective generation,
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which utilizes the ratio of the fitness values of two candidates

and a parameter called the level of selectivity. In the limit

as the level of selectivity tends to infinity, the scheme

guarantees that the selected candidate is a global optimizer.

Hence, the SEGS technique in [4] is a generalization of

standard optimization. Although rational behavior suggests

dynamic transitions that are based on global knowledge, [4]

proved that rationality may be achieved through a sequence

of dynamic transitions using only local knowledge of the

reward function. Thus, a SEGS is also computationally

inexpensive at each step.

This paper generalizes selective generation by describing

the concept of multi-selective generation, which utilizes the

fitness value of a candidate optimizer, all fitness values in

a neighborhood of the candidate optimizer, and the level

of selectivity. That is, multi-selective generation assumes a

more global knowledge of the reward function than [4], but

the trade-off is faster behavior design.

More specifically, we propose a novel mathematical def-

inition of selection, the Multi-Select function, for use in

behavior design. We prove that multi-selective generation

is a sufficient condition for rational behavior, under certain

technical assumptions. Since rational behavior is itself a

sufficient condition for responsiveness [4], the resultant multi-

selective generation scheme is therefore responsive. We then

discuss the limitations imposed by the technical assumptions,

and their relevance to the CGAFPS. Lastly, we compare the

convergence properties of multi-selective generation with a

SEGS.

C. Related Literature

The work in this paper is a Markov Chain Monte Carlo

method [9] for optimization. Other probabilistic evolutionary

computation approaches include the covariance matrix adap-

tation evolution strategy [10] and the estimation distribution

algorithm [11]. A demonstration of the uniqueness of our

work with respect to the applicable literature is available in

[4]. Evolutionary computation for dynamic fitness landscapes

is a relatively new area of study; for a recent overview,

see [12]. The authors of [12] also state that ‘there are no

published results that are comparative to the patentable works

cited for static environments,’ a failing that this paper seeks

to remedy. An example of a modified genetic algorithm for

optimization on a dynamic fitness landscape is [13].

The convergence properties of genetic algorithms have

been previously analyzed with Markov chains [14], [15].

One novelty of this paper is a study of the use of rational

behavior by the CGAFPS, and a convergence comparison of

a generalized CGAFPS with the new SEGS technique.

D. Paper Outline

The remainder of the paper is as follows. Section II

creates a theoretical framework, defines the Multi-Select

function, and states the similarity between multi-selective

generation and the CGAFPS. Section III presents an abridged

version of Markov chain rational behavior. Section IV details

some dynamic and convergence properties of multi-selective

generation, indicating why the CGAFPS is not typically

rational. Section V discusses a few multi-selective generation

algorithm characteristics inherited from the SEGS technique.

Section VI presents conclusions.

II. THEORETICAL FOUNDATION

In behavior design, a cell is any element of the domain of

a reward function, and a resource is any input that facilitates

a transition between cells. Cells may also be referred to

as states or candidate optimizers. A cell utilizes a resource

to reproduce and generate an offspring, i.e., transition to

another cell. The generation process may incorporate features

such as mutation, recombination, inheritance, drift, and flow

[4]. Consistent with these notions, we make the following

definition.

Definition 1: A generation system is a triple E = (X ,R,G),
where

• X is a set of n cells, X = {x1,x2, . . . ,xn};

• R is a set of m resources, R = {r1,r2, . . . ,rm}, that can

be utilized for cell reproduction;

• G : X × R → X is a generation function that maps

a parent cell and a resource into a descendant cell

outcome.

Let
(

rµ

)

=
(

r1,r2, . . . ,rµ

)

be a sequence of µ resources

from R. We define the notation

G
(

x,
(

rµ

))

:= G(. . .G(G(x,r1),r2) . . . ,rµ) (1)

to denote the cell produced by x using sequence
(

rµ

)

.

Definition 2: The set of cells, X , of the generation system

E = (X ,R,G) is reachable through G and R if, for all pairs

(x1,x2)∈ X2, there exists k ∈N and a sequence (rk)∈ R such

that x2 = G(x1,(rk)).
Note that reachability of the cells of a generation system

is identical to that of reachability of the vertices of a directed

graph in Graph Theory [16].

In Definition 1, the restriction that the offspring of a cell

be itself a cell implies that the set of cells is closed [17],

since there is no feasible transition to any element outside

X . If the set of cells is also reachable, then X is said to be

irreducible [17].

We associate each cell with a non-zero, positive perfor-

mance index that is a measure of the fitness of the cell,

F : X → R
+. The notion of fitness facilitates the following

novel mathematical definition of selection.

Definition 3: Given a cell set, X , and a fitness function

F : X → R
+, let Multi-Select : Xk ×N → X be a random

function such that if x1 ∈ X , . . . ,xk ∈ X are any k cells, and

N ∈ N is the level of selectivity, then for all 1 ≤ i ≤ k,

Multi-Select(x1, . . . ,xk,N) = xi, with probability

F (xi)
N

k

∑
j=1

F (x j)
N

. (2)

We can now define a multi-selective generation system

(MSGS).

Definition 4: A multi-selective generation system is a

quadruple Γ = (X ,R,G,F), where
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• (X ,R,G) is a generation system;

• F : X → R
+ is a function that evaluates cell fitness;

• the set of cells, X , is reachable through G and R; and

• the dynamics of the system are given by

X (t +1) =

Multi-Select (X (t),G(X (t),r1) , . . . ,G(X (t),rm) ,N) .
(3)

In (3), X (t) denotes the realization of a random cell variable

at time t, ri is a resource where 1 ≤ i ≤ m, G(X (t),ri)
denotes the offspring of the realized random cell utilizing

resource ri at time t, and X (0) has a known probability

mass function. The cells G(X (t),ri) , 1 ≤ i ≤ m, constitute

the largest neighborhood of X (t) within which a transition

is possible. The fitness values of cells in this neighborhood

are required at each step.

Also in (3), the probability of a cell realization at some

future time given the present cell realization is conditionally

independent of the past time history of cell realizations. Thus,

the dynamics of an MSGS form a discrete-time homogeneous

Markov chain [9]. This property is useful for the MSGS

analysis conducted in Section IV.

The Multi-Select function has a number of interesting

properties, including:

• For all N and for all 1 ≤ i ≤ k, 1 ≤ j ≤ k,

Pr[Multi-Select(x1, . . . ,xk,N) = xi]

Pr[Multi-Select(x1, . . . ,xk,N) = x j]
=

(

F(xi)

F(x j)

)N

.

(4)

That is, the ratio of the probabilities of selecting any

two cells is equal to the ratio of their respective fitnesses

raised to the power N.

• For N = 0, the values of fitnesses are irrelevant. That is,

for all 1 ≤ i ≤ k,

Pr[Multi-Select(x1, . . . ,xk,0) = xi] = 1/k. (5)

• When N → ∞, if there is a unique index, I, such that

F(xi) is maximized for i = I then

Pr[Multi-Select(x1, . . . ,xk,∞) = xI ] → 1. (6)

• If all the fitnesses are equal then, for all N and for all

1 ≤ i ≤ k,

Pr[Multi-Select(x1, . . . ,xk,N) = xi] = 1/k. (7)

Reference [4] demonstrates that, for each iteration of

the CGAFPS, the ratio of the probability of selecting an

unchanged cell as a member of the population for the next

generation to the probability of selecting an offspring of this

cell (i.e., a mutated and/or recombined version of the cell)

as a member of the population for the next generation is

proportional to the fitness ratio of this cell and its offspring.

If the constant of proportionality is one, then a particular case

of (4) is obtained with N = 1. For this paper, our extension of

the scheme in [4] is such that there is another similarity with

the CGAFPS: fitness proportional selection is a particular

case of multi-selective generation with N = 1.

The concept of multi-selective generation has been previ-

ously implemented experimentally with great success. Con-

sider the well-known paper, [18], which describes a system

for the evolution of virtual creatures in a fitness landscape

that changes frequently because of competition. The work

utilizes an all vs. best strategy, defined as the competition

between all individuals in a generation and a single opponent

with the highest fitness from the previous generation. This

strategy is what we have called multi-selective generation.

The paper states that

‘the most “interesting” results occurred when the

all vs. best competition pattern was used. Both

one and two species evolutions produced some

intriguing strategies.’

III. HIGHLIGHTS OF MARKOV CHAIN RATIONAL

BEHAVIOR

This section presents an overview of the key results of

Markov chain rational behavior in [4]. Let (X ,P) be a time-

homogeneous, irreducible, ergodic Markov chain, where X =
{x1,x2, . . . ,xn} is the set of states of a Markov process,

P ∈ R
n×n is the matrix of transition probabilities for these

states, and n < ∞ is the number of states. Assume that

the initial probability distribution over the states is known,

i.e., we are given an n-vector p(0) having elements pi(0) =
Pr[X (0) = xi] for all xi ∈ X , where X (0) denotes the state

realization at time 0, and we have
n

∑
i=1

pi(0) = 1. Since we

have assumed that the states in X are ergodic and irreducible,

they admit a unique stationary probability distribution [9],

[17]. Let π =
[

π1 π2 . . . πn

]

be the row vector of these

stationary probabilities, satisfying the constraints πi > 0 ∀i,

and
n

∑
i=1

πi = 1. Let F : X → R
+ be a positive fitness function.

Let N ∈ N be a natural number. We define rational behavior

for this Markov chain as follows.

Definition 5: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) is said to behave rationally with respect

to fitness F with level N if

πi

π j

=

(

F (xi)

F (x j)

)N

, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (8)

Each stationary probability can also be explicitly character-

ized to ensure Markov chain rational behavior, as is indicated

by the following theorem.

Theorem 1: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) behaves rationally with respect to

fitness F with level N if and only if

πi =
F (xi)

N

n

∑
k=1

F (xk)
N

, 1 ≤ i ≤ n. (9)

Proof: See [4].

Here, we have a more general, probabilistic version of the

optimization of an objective function. A Markov chain that

behaves rationally selects the state of maximum fitness with

the highest stationary probability, and, in the limit as N

approaches ∞, this probability is 1. The problem and solution

then revert to one of standard optimization.
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Remarkably, rational behavior in Markov chains is the

result of a subsidiary optimization.

Theorem 2: The stationary distribution π of the time-

homogeneous, irreducible, ergodic Markov chain (X ,P) that

behaves rationally with respect to fitness F with level N

solves the optimization problem

min
π1,...,πn

U(π) = −
n

∑
i=1

ϕi ln(πi), (10)

subject to the constraints
n

∑
i=1

πi = 1, and πi > 0, ∀i, utilizing

the fitness distribution

ϕi =
F (xi)

N

n

∑
k=1

F (xk)
N

, 1 ≤ i ≤ n. (11)

Proof: See [4].

Furthermore, Theorem 2 states that at the optimum, the

stationary distribution agrees with the fitness distribution, i.e.,

π = ϕ .

Using the notion of entropy, we can interpret (10) as fol-

lows. First, we recognize the term − ln(πi) as the information

content of state xi [19]. Hence, the right hand side of (10)

represents the “fitness-expectation of information.” Moreover,

we have the following.

Corollary 1: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) behaves rationally with respect to

fitness F with level N if and only if its stationary probability

distribution minimizes the fitness-expectation of information.

At the optimum, this fitness-expectation of information is the

entropy of the fitness distribution, i.e.,

U∗ = H(ϕ) = −
n

∑
i=1

ϕi ln(ϕi). (12)

Entropy maximization is important for search according

to [20]. The relationship between entropy maximization and

optimal search is clarified in [21]. Applying the results from

[21] and [20], an exponential normalized fitness function

relates rational behavior, entropy and optimal search [4].

A scheme with underlying Markov chain dynamics that

behave rationally also maximizes the entropy of the fitness

distribution when the fitness function is exponential. The

implication is that a fitness function like

F(xi) = e−((z(xi)−Z)2) (13)

together with a scheme that makes use of rational behavior

guarantees “good” behaviors efficiently. In (13), z : X → R

is an unknown, computable, and possibly changing function

that we are interested in. We assume that we are given an

element Z in the image of z, and we wish to find x ∈ X such

that z(x) = Z, or such that ||z(x)−Z|| is small.

Reference [4] formally defines responsiveness as the sen-

sitivity of the stationary distribution to changes in fitness.

The level of selectivity has an asymptotic effect on re-

sponsiveness. Standard optimization (N → ∞) and random

optimization (N = 0) are non-responsive. Responsiveness is a

direct outcome of Markov chain rational behavior, as follows.

Theorem 3: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) is responsive if the chain behaves

rationally.

Proof: See [4].

IV. MULTI-SELECTIVE GENERATION SYSTEMS AS

MARKOV CHAINS THAT BEHAVE RATIONALLY

This section applies the theory of rational behavior for

time-homogeneous, irreducible, ergodic Markov chains (as

developed in Section III) to an MSGS as formulated in

Section II. We begin with some preliminaries.

Definition 6: Let Γ = (X ,R,G,F) be a multi-selective

generation system. Let xi,x j ∈ X be any two cells. The

descendancy matrix, δ , has elements

δi j =

{

1 if ∃r ∈ R : x j = G(xi,r), 1 ≤ i ≤ n, 1 ≤ j ≤ n,

0 otherwise.

(14)

Hence, the descendancy matrix indicates whether it is

possible to produce cell x j in one step from cell xi, using

any resource. Recall that an MSGS follows the stochastic

Markov process described by (3). The descendancy matrix is

used when specifying a matrix of transition probabilities that

describes the cell-to-cell transitions that occur as a result of

the multi-selection dynamics. For the MSGS Γ = (X ,R,G,F),
the matrix of transition probabilities, P, has elements

Pi j =Pr[X (t +1) = x j | X (t) = xi], (15)

=Pr[Multi-Select (xi,G(xi,r1) , . . . ,G(xi,rm) ,N) = x j |

X (t) = xi]×Pr[offspring is x j | progenitor is xi]
(16)

=























F(x j)
N

m

∑
k=1

F(G(xi,rk))
N+F(xi)

N
δi j, ∀ j 6= i,

1−
n

∑
j=1
j 6=i

F(x j)
N

m

∑
k=1

F(G(xi,rk))
N+F(xi)

N
δi j, if j = i.

(17)

Note that the matrix of transition probabilities in (17) is a

stochastic matrix.

A. Dynamic Properties of Multi-Selective Generation Sys-

tems

We can now state some dynamic properties of multi-

selective generation systems, under certain technical condi-

tions.

Theorem 4: For the ergodic MSGS Γ = (X ,R,G,F), as-

sume that

i) the descendancy matrix, δ , is symmetric, and

ii) ∀1 ≤ i ≤ n, 1 ≤ j ≤ n with δi j = 1,

m

∑
k=1

F (G(xi,rk))
N +F (xi)

N =
m

∑
k=1

F (G(x j,rk))
N +F (x j)

N .

(18)

Then the Markov chain representing the stochastic dynamics

of the ergodic MSGS

1) behaves rationally with fitness F and level N. That

is, the row vector π =
[

π1 π2 . . . πn

]

, where πi
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satisfies (9), is a left eigenvector of P, the matrix

of transition probabilities for Γ, with corresponding

eigenvalue 1 (i.e., πP = π). Hence, π is the vector of

stationary probabilities for the MSGS.

2) is time-reversible, i.e.,

πiPi j = π jPji, ∀i, j. (19)

Proof: See [4].

As a result of Theorem 3, the stochastic dynamics of the

ergodic MSGS with sufficient conditions i) and ii) are

responsive.

The symmetry condition i) on the descendancy matrix,

δ , implies that there exists a forward and reverse transition

between any pair of cells. This condition is similar to the

one in [4].

Condition ii) is a restrictive sufficient condition. It states

that the sum of the fitness values of possible transitions in the

neighborhood of xi, which includes x j, is equal to the sum of

the fitness values of possible transitions in the neighborhood

of x j, which includes xi. Although this condition is an

extension of one implicitly assumed in [4], which is that the

addition of any two fitness values commute, the extended

condition ii) may be difficult to satisfy.

If condition ii) is satisfied, then there is a need to evaluate

the fitness of cells in a sub-population of candidate optimiz-

ers (as in the CGAFPS). For m > 2, an ergodic MSGS is more

computationally expensive than an ergodic SEGS, but can be

less expensive than evaluating the fitness of all elements in

the domain of the objective function at the start of the search.

Necessary conditions for rational behavior are as follows.

Theorem 5: For the ergodic MSGS Γ = (X ,R,G,F), as-

sume that the Markov chain representing the stochastic

dynamics of the ergodic MSGS behaves rationally with

fitness F and level N. Then

n

∑
i=1

F(xi)
N

m

∑
k=1

F (G(x j,rk))
N +F (x j)

N
δ ji =

n

∑
i=1

F(xi)
N

m

∑
k=1

F (G(xi,rk))
N +F (xi)

N
δi j. (20)

If the Markov chain representing the stochastic dynamics of

the ergodic MSGS is also time-reversible, then

δ ji

m

∑
k=1

F (G(x j,rk))
N +F (x j)

N
=

δi j

m

∑
k=1

F (G(xi,rk))
N +F (xi)

N
.

(21)

Proof: See [4].

For finite N and cell fitness values, (21) is thus a necessary

and sufficient condition for rational behavior. Therefore, not

satisfying (21) results in behavior that is not rational. Since

the CGAFPS is not often applied such that (21) is true with

N = 1, the CGAFPS does not achieve rational behavior in

these instances. Modification is required.

B. Convergence Properties of Multi-Selective Generation

Systems

We now compare the convergence rates of an ergodic

MSGS and an ergodic SEGS, by utilizing the second largest

eigenvalue as a measure of convergence rate — the smaller

this value, the more quickly the Markov chain dynamics

converge to steady state. We make use of the result in [22] for

reversible Markov chains with a common underlying graph.

Let the underlying graph representations of the ergodic

MSGS and the ergodic SEGS be the same, and let the

sufficient conditions for rational behavior with fitness F

with level N be satisfied. If λ M
2 < 1 is the second largest

eigenvalue of the MSGS probability transition matrix PM ,

and λ S
2 < 1 is the second largest eigenvalue of the SEGS

probability transition matrix PS then, from [22],

(

1−λ M
2

)

≥

min
{i, j} is an edge

wM
i j

wS
i j

max
i

πM
i

πS
i

(

1−λ S
2

)

, (22)

where wM
i j = πM

i PM
i j , wS

i j = πS
i PS

i j.

Because both techniques yield rational behavior, πM
i = πS

i .

Consequently,

(

1−λ M
2

)

≥

(

min
{i, j} is an edge

PM
i j

PS
i j

)

(

1−λ S
2

)

, (23)

or
(

1−λ M
2

)

≥ α
(

1−λ S
2

)

, (24)

where, from [4] and (17), α =

min
{i, j}

is an edge

F(xi)
N +F(x j)

N

γi j







m

∑
k=1

G(xi,rk) 6=x j

F (G(xi,rk))
N +F (xi)

N +F (x j)
N







,

(25)

where γi j is a probability value on the interval (0,1].
In (24), if α = 1, then λ M

2 ≤ λ S
2 . Since N → ∞ implies that

α → 1, non-responsive multi-selective generation converges

to steady state faster than a SEGS process.

In (24), if α > 1, then λ M
2 ≤ λ S

2 . This occurs for a typical

application of the SEGS, where the number of resources is

large enough so that the probability distribution on these

resources (which is indicated by γi j, and is typically a

uniform probability distribution) is small, yet the number

of resources is also small enough so that the corresponding

MSGS implementation does not select among large fitness

neighborhoods at each iteration. For this scenario, a SEGS

requires a lot more exploration than the MSGS.

In (24), if 0 < α < 1, then λ M
2 ≤ αλ S

2 + 1−α . That is,

for small α , it is possible that λ S
2 ≤ λ M

2 . This occurs when

γi j is large and N is small. The physical interpretation of

this scenario is as follows: the resource choice (indicated

by γi j) is biased in such a way that the probability of

SEGS transitions to cells of higher fitness is greater than the

probability of corresponding MSGS transitions. Hence, the
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faster SEGS convergence to steady state for this scenario.

We believe that such a bias is possible, but is atypical.

The preceding analysis leads to the following conclusion:

while the CGAFPS may not satisfy the necessary conditions

for rationality and hence not design rational behavior, the

algorithm will, in general, converge to steady state faster

than a SEGS. Such a trade-off is consistent with the No

Free Lunch theorem for optimization [8].

V. DISCUSSION

The MSGS scheme inherits characteristics from the SEGS

technique, discussed here. A detailed exposition is in [4].

The level of selectivity N manipulates the trade-off be-

tween search exploration (search diversity) and search ex-

ploitation (search intensity in a local search subspace). At

very low N, a selective generation algorithm wanders through

the search space and may not reach a desired target Z

within a user-specified limit of generations. Increases in N

cause a corresponding improvement in target tracking. Low

N trajectories typically depict excursions away from the

desired target; these excursions are minimized as N increases.

High N trajectories achieve near perfect target tracking with

few excursions. When the target variations are large, lower

N trajectories display a more immediate response to the

change in target than higher N trajectories. However, the

more selective trajectories overtake trajectories with lower N

values after a short period of time. An increase in N decreases

the number of generations to find a “good” solution.

Initial conditions do play a role in the convergence of

a selective generation algorithm. Moreover, a significantly

greater average number of generations is required when there

are fewer fit solutions in the search space. Since generation

systems use resources to discretize the search space, the type

of discretization employed by a generation system affects the

average number of generations required to find a solution.

The CGAFPS exhibits responsive behavior, which is unsur-

prising since it is a particular case of a selective generation

scheme with N = 1. The (1+1) evolutionary strategy behaves

like a selective generation scheme with very high N. Note

that the MSGS and SEGS algorithms are not related to

the cross-entropy method for optimization [23]. Reference

[4] provides insight into the connection between responsive

optimization and cross-entropy.

The original SEGS technique has been applied to problems

in flight mechanics, control of dynamic systems, and artificial

intelligence. Similar MSGS versatility is expected.

VI. CONCLUSIONS AND FUTURE WORK

Multi-selective generation extends a viable technique that

uses rationality to achieve responsive behavior. Rational

behavior is desirable because of its capacity for efficient

search. However, the conditions for this extended scheme to

behave rationally are highly restrictive. Since the technique

is a generalization of the canonical genetic algorithm with

fitness proportional selection (CGAFPS), it is unlikely that a

typical application of the CGAFPS behaves rationally. Multi-

selective generation can find a fit candidate optimizer faster

than the original technique that it extends, but exceptions

do exist. Therefore, the original scheme in [4] should be

preferred for efficient search and responsive behavior design.

Future work includes classifying the types of multi-

selective generation systems that satisfy the restrictive condi-

tions for rational behavior. Applications of the technique to

finite horizon versions of practical problems, e.g., flapping

wing flight as in the original [4], also remain to be explored.
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